Energy is stored in chemical bonds during photosynthesis.
During photosynthesis, the radiant energy from the sun is converted to chemical energy in carbohydrates.
Inorganic materials in the form of carbon dioxide and oxygen combine to form carbohydrates in the presence of radiant energy according to the equation below:

The energy is thus, stored in chemical bonds in the carbohydrate and this is what is oxidized during respiration to release the locked energy.
More on photosynthesis can be found here: brainly.com/question/1388366
Answer:
Rank in increasing order of effective nuclear charge:
Explanation:
This explains the meaning of effective nuclear charge, Zeff, how to determine it, and the calculations for a valence electron of each of the five given elements: F, Li, Be, B, and N.
<u>1) Effective nuclear charge definitions</u>
- While the total positive charge of the atom nucleus (Z) is equal to the number of protons, the electrons farther away from the nucleus experience an effective nuclear charge (Zeff) less than the total nuclear charge, due to the fact that electrons in between the nucleus and the outer electrons partially cancel the atraction from the nucleus.
- Such effect on on a valence electron is estimated as the atomic number less the number of electrons closer to the nucleus than the electron whose effective nuclear charge is being determined: Zeff = Z - S.
<u><em>2) Z eff for a F valence electron:</em></u>
- F's atomic number: Z = 9
- Total number of electrons: 9 (same numer of protons)
- Period: 17 (search in the periodic table or do the electron configuration)
- Number of valence electrons: 7 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 9 - 7 = 2
- Zeff = Z - S = 9 - 2 = 7
<u><em>3) Z eff for a Li valence eletron:</em></u>
- Li's atomic number: Z = 3
- Total number of electrons: 3 (same number of protons)
- Period: 1 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 1 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 3 - 1 = 2
- Z eff = Z - S = 3 - 2 = 1.
<em>4) Z eff for a Be valence eletron:</em>
- Be's atomic number: Z = 4
- Total number of electrons: 4 (same number of protons)
- Period: 2 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 2 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 4 - 2 = 2
- Z eff = Z - S = 4 - 2 = 2
<u><em>5) Z eff for a B valence eletron:</em></u>
- B's atomic number: Z = 5
- Total number of electrons: 5 (same number of protons)
- Period: 13 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 3 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 5 - 3 = 2
- Z eff = Z - S = 5 - 2 = 3
<u><em>6) Z eff for a N valence eletron:</em></u>
- N's atomic number: Z = 7
- Total number of electrons: 7 (same number of protons)
- Period: 15 (search on the periodic table or do the electron configuration)
- Number of valence electrons: 5 (equal to the last digit of the period's number)
- Number of electrons closer to the nucleus than a valence electron: S = 7 - 5 = 2
- Z eff = Z - S = 7 - 2 = 5
<u><em>7) Summary (order):</em></u>
Atom Zeff for a valence electron
- <u>Conclusion</u>: the order is Li < Be < B < N < F
Methanol is prepared by reacting Carbon monoxide and Hydrogen gas,
CO + 2 H₂ → CH₃OH
Calculating Moles of CO:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 1 Mole of CO
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of CO
Solving for X,
X = (3.60 × 10² g × 1 Mole) ÷ 32 g
X = 11.25 Moles of CO
Calculating Moles of H₂:
According to equation,
32 g (1 mole) of CH₃OH is produced by = 2 Mole of H₂
So,
3.60 × 10² g of CH₃OH is produced by = X Moles of H₂
Solving for X,
X = (3.60 × 10² g × 2 Mole) ÷ 32 g
X = 22.5 Moles of H₂
Result:
3.60 × 10² g of CH₃OH is produced by reacting 11.25 Moles of CO and 22.5 Moles of H₂.
A feature that an iron metal has is a sea of electrons