Answer:
C
Explanation:
Exothermic means that heat is released from the reaction
Answer:
28500 years
Explanation:
Applying,
A = A'()............... Equation 1
Where A = Original mass of Carbon-14, A' = Final mass of carbon-14 after decaying, x = total time, y = half-life.
From the question,
Given: A = 1 g, A' = 31.3 mg = 0.0313 g, y = 5700 years.
Substitute these values into equation 1
1 = 0.0313()
= 1/0.0313
= 31.95
≈ 32
≈ 2⁵
Equating the base and solve for x
x/5700 ≈ 5
x ≈ 5×5700
x ≈ 28500 years
Answer:
Hey!
Because the organisms habitat has been destroyed, (by many reasons such as Deforestation and Climate Change), the capacity to hold the current population of the plant or animals is declined which can eventually lead to the scenario of EXTINCTION
Explanation:
HOPE THIS HELPS!!
Answer:
Energy sources do not have 100% efficiency because <em>the processes of energy conversion to usable forms involves energy losses. </em>
Some have lower efficiencies due to; <u>energy losses in form of heat</u> during conversion, <u>poor technology applied during conversion</u> of energy and<u> lack of desire equipment</u> to use in the energy conversion system.
Explanation:
The desired form of energy for use is derived from conversion of energy from the source using an energy converter into another form which is usable. The efficiency of the energy converter is calculated as;
л = output energy/input energy
The efficiency of energy is limited to the cost of equipment required for conversion from energy source by the energy converter to a form which is usable. Additionally, because energy sources are scarce, the technology to use in energy conversion is a factor affecting energy efficiency in that high efficiency will require advanced technology with better equipment leading higher costs of that energy form. when heat losses are involved during energy conversion, efficiency lowers, thus its better if such losses are used as energy input in another system.
Explanation:
P1V1 = nRT1
P2V2 = nRT2
Divide one by the other:
P1V1/P2V2 = nRT1/nRT2
From which:
P1V1/P2V2 = T1/T2
(Or P1V1 = P2V2 under isothermal conditions)
Inverting and isolating T2 (final temp)
(P2V2/P1V1)T1 = T2 (Temp in K).
Now P1/P2 = 1
V1/V2 = 1/2
T1 = 273 K, the initial temp.
Therefore, inserting these values into above:
2 x 273 K = T2 = 546 K, or 273 C.
Thus, increasing the temperature to 273 C from 0C doubles its volume, assuming ideal gas behaviour. This result could have been inferred from the fact that the the volume vs temperature line above the boiling temperature of the gas would theoretically have passed through the origin (0 K) which means that a doubling of temperature at any temperature above the bp of the gas, doubles the volume.
From the ideal gas equation:
V = nRT/P or at constant pressure:
V = kT where the constant k = nR/P. Therefore, theoretically, at 0 K the volume is zero. Of course, in practice that would not happen since a very small percentage of the volume would be taken up by the solidified gas.