Answer:
The correct answer is -transfer fixed carbon dioxide to cells in which the Calvin cycle occurs
Explanation:
In C4 plants the light reaction and Calvin cycle occurs in two different cell that are mesophyll cell and bundle sheath cells. First, the CO₂ is fixed into 4- carbon oxaloacetate by an enzyme PEP carboxylase.
Then this oxaloacetate is converted into a simpler form called malate. Malate molecule then enters into bundle sheet cell and there it releases one molecule of CO₂. This CO₂ enters the Calvin cycle which results in the sugar formation with the help of enzyme rubisco.
Therefore by releasing of CO₂ molecule by malate in bundle sheet cells, it transfer fixed carbon for the Calvin cycle to occur.
Answer:
The correct answers are option A. "Corals are animals". B. "Corals are benthic organisms"., and E. "Corals live in tropical water".
Explanation:
Corals are animals, what we know as a coral, is in fact a group of small animals called polyps that need food to survive. Corals are benthic organisms because they live at the bottom of the sea. The subclass of benthic organisms that corals belong is called Macrobenthos, for being large enough to be seen at the naked eye. Corals live mostly in tropical waters, because they do not tolerate waters with a temperature below 18 Celsius.
Answer:
Mutualism
Explanation:
In biology, the term <em>symbiosis </em>refers to close and often long-term interactions between organisms that belong to different species. There are three main types of symbiotic relationships:
- mutualism - both organisms benefit from their relationship
- commensalism - one organism benefits, while the other doesn't benefit or suffer any harm
- parasitism - one organism causes harm to the other
In the given scenario, both the bird and plant benefit from their relationship. The bird gets food, while the plant reproduces more easily. This is why their relationship is an example of mutualism.
I think its a , but double check because i dont want it to be wrong .
Answer:
glutamic acid, because the R group could form ionic bonds
arginine, because the R group could form ionic bonds
tryptophan and tyrosine, because the R groups are small, allowing close stacking
glycine and alanine, because the R groups are small, allowing close stacking