Answer:
x=133 y=-25
Step-by-step explanation:
I'll do both ways for you. So let's start with Substitution:
With the sub method, you have to set both equations equal to each other by setting them equal to the same variable. Since there is no coefficient in front of both x's in both equations, that variable will be easiest to solve for.
x + 2y = 83 & x + 5y = 8
Solve for x.
x = 83 - 2y & x = 8 - 5y
Once you have solved for x, set each equation equal to one another and solve for y now.
83 - 2y = 8 - 5y
Isolate all variables to one side:
83 = 8 - 3y
Now subtract the 8 to fully isolate the y variable:
75 = -3y
Divide by -3:
-25 = y Now that you have your first variable, plug it into one of the original equations and solve for x.
x + 2(-25) = 83
x - 50 = 83
x = 133
Now for the Elimination method. For this method you need to get rid of a variable by either subtracting/adding each equation together. Again, since you can subtract and x from both equations, you will be left with only the y variable to solve:
Put each equation on top of one another and subtract:
x + 2y = 83
- (x + 5y = 8)
The x's will cancel out:
(x - x) + (2y - 5y) = (83 - 8)
Simplify:
-3y = 75
Solve for y
y = -25
Then, plug y = -25 into one of the original equations:
x + 5(-25) = 8
Solve for x:
x - 125 = 8
x = 133
Hope this helps!
16/3 1/2= 7/32. so you would measure 7/32 on the 16 cup scoop
Answer:
Yes, an arrow can be drawn from 10.3 so the relation is a function.
Step-by-step explanation:
Assuming the diagram on the left is the domain(the inputs) and the diagram on the right is the range(the outputs), yes, an arrow can be drawn from 10.3 and the relation will be a function.
The only time something isn't a function is if two different outputs had the same input. However, it's okay for two different inputs to have the same output.
In this problem, 10.3 is an input. If you drew an arrow from 10.3 to one of the values on the right, 10.3 would end up sharing an output with another input. This is allowed, and the relation would be classified as a function.
However, if you drew multiple arrows from 10.3 to different values on the right, then the relation would no longer be a function because 10.3, a single input, would have multiple outputs.
1.50c + 2.50a = 1100
c + a = 500
multiply the second equation by -1.50
1.50c + 2.50a = 1100
-1.50c - 1.50a = -7.50