Answer:
1 = Input G
2 = Input F
3 = Input H
Step-by-step explanation:
Answer: The height of the triangle is: " 3.5 cm " .
_______________________________________________________
<u>
Note</u>: The formula/equation for the area, "A" , of a triangle is:
A = (1/2) * b * h ; or write as: A = (b * h) / 2 ;
_________________________________________________
in which: "A = area of the triangle" ;
"b = base length" ;
"h = "[perpendicular] height" ;
_________________________________________________
Given: h = (b/2) ;
A = 12.25 cm²
{Note: Let us assume that the given area was "12.25 cm² " .}.
_________________________________________________
We are to find the height, "h" ;
The formula for the Area, "A", is: A = (b * h) / 2 ;
Let us rearrange the formula ;
to isolate the "h" (height) on one side of the equation;
→ Multiply EACH side of the equation by "2" ; to eliminate the "fraction" ;
2*A = [ (b * h) / 2 ] * 2 ;
to get: " 2A = b * h " ;
↔ " b * h = 2A " ;
Divide EACH SIDE of the equation by "b" ; to isolate "h" on one side of the equation:
→ (b * h) / b = (2A) / b ;
to get:
→ h = 2A / b ;
Since "h = b/2" ; subtitute "b/2" for "h" ;
Plug in: "12.25 cm² " for "A" ;
→ b/2 = 2A/b ; → Note: " 2A/b = [2* (12.25 cm²) ] / b " ;
Note: " 2* (12.25 cm²) = 24.5 cm² ;
Rewrite as:
→ b/2 = (24.5 cm²) / b ;
_____________________________________
Cross-multiply: b*b = (24.5 cm²) *2 ;
to get: b² = 49 cm² ;
Take the "positive square root" of each side of the equation" ;
to isolate "b" on one side of the equation ; & to solve for "b" ;
→ +√(b²) = +√(49 cm²) ;
→ b = 7 cm ;
Now, we want to solve for "h" (the height) :
_________________________________________________________
→ h = b / 2 = 7 cm / 2 = 3.5 cm ;
_________________________________________________________
Answer: The height of the triangle is: " 3.5 cm <span>" .
</span>_________________________________________________________
Answer: 
Step-by-step explanation:
Corresponding sides of similar triangles are proportional, so:

Parallel lines have the same slope
Y = -8x + 8
The slope will be -8
Therefore: y = -8x + b
Plug in the point
7 = -8(9) + b
7 = -72 + b, b = 79
Solution: y = -8x + 79
our lines of symmetry is made limited by the presence of the pentagon. If we slice the pentagon into two, the only line of symmetry we could create would be the line intersecting O and the median of LM. Other lines would not create a symmetrical half.
Therefore the line of reflection is only 1.
questioned answered by
(jacemorris04)