1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
2 years ago
8

Need help in showing how to get the final velocity​

Physics
1 answer:
kobusy [5.1K]2 years ago
6 0

I don't think the provided solution is correct because it's not dimensionally consistent. The quantity 8h-1 in particular doesn't make sense since it's mixing a distance with a dimensionless constant.

Here's how I think the proper answer should look:

The net force on the box acting perpendicular to the ramp is

\sum F_\perp = F_{\rm normal} - mg \cos(\theta) = 0

where F_{\rm normal} is the magnitude of the normal force due to contact with the ramp and mg\cos(\theta) is the magnitude of the box's weight acting in this direction. The net force is zero since the box doesn't move up or down relative to the plane of motion.

The net force acting parallel the ramp is

\sum F_\| = mg\sin(\theta) - F_{\rm friction} = ma

where mg\sin(\theta) is the magnitude of the parallel component of the box's weight, F_{\rm friction} is the magnitude of kinetic friction, and a is the acceleration of the box.

From the first equation, we find

F_{\rm normal} = mg \cos(\theta)

and since F_{\rm friction} = \mu F_{\rm normal}, we get from the second equation

mg\sin(\theta) - \mu mg\cos(\theta) = ma

and with \mu = 0.25 and \theta=60^\circ, we get

a = g\sin(60^\circ) - 0.25g \cos(60^\circ) = \left(\dfrac{\sqrt3}2 - \dfrac18\right) g

Let x be the length of the ramp, i.e. the distance that the box covers as it slides down it. Then the box attains a final velocity v such that

v^2 = 2ax

From the diagram, we see that

\sin(\theta) = \dfrac hx \implies x = \dfrac h{\sin(60^\circ)} = \dfrac{2h}{\sqrt3}

and so

v^2 = \dfrac{4ah}{\sqrt3} = \left(2 - \dfrac1{2\sqrt3}\right) hg = \dfrac14 \left(8 - \dfrac2{\sqrt3}\right) hg

\implies v = \dfrac12 \sqrt{\left(8 - \dfrac2{\sqrt3}\right) hg}

You might be interested in
Explain how an intrusive igneous rock could become a metamorphic rock and then an extrusive igneous rock.
sleet_krkn [62]
1.igneous rocks are formed when magma or lava cools and hardens
2. the cooling rate of the rock
5 0
3 years ago
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
How do defy gravity?
kaheart [24]
Exert force upward.
Like when you pick something up from the floor, or walk up the stairs.
6 0
3 years ago
Prove the correctness of this equation s=vt + 1/2at ​
Kaylis [27]

Answer:

The formula is dimensionally correct.

Explanation:

Given

s = ut + \frac{1}{2}at^2

Required

Prove its correctness

Write out the dimension of each:

s = M^0LT^0 --- displacement

ut = M^0LT^{-1} *  T --- velocity * time

\frac{1}{2}at^2 = M^0LT^{-2} * T^2 --- acceleration * square of time

The expression becomes:

s = ut + \frac{1}{2}at^2

M^0LT^0 = M^0LT^{-1} *  T + M^0LT^{-2} * T^2

Apply law of indices

M^0LT^0 = M^0LT^{-1+1} + M^0LT^{-2+2}

M^0LT^0 = M^0LT^{0} + M^0LT^{0}

M^0LT^0 = M^0LT^{0}

Both sides of the equation are equal

5 0
3 years ago
A 1200 kg car is brought from 25 m/s to 10m/s over a time period of 5 seconds. Determine the force experienced by the car
aleksklad [387]
It's simple.
We know force is the rate of change in momentum.
So F=(mv-mu)/t or F=m(v-u)/t
=1200*(25-10)/5=3600N
7 0
3 years ago
Other questions:
  • What does WNBA stand for
    10·2 answers
  • A piano string having a mass per unit length of 5.00 g/m is under a tension of 1350 N. Determine the speed of transverse waves i
    13·1 answer
  • Saturn’s rings are composed of __________.
    13·2 answers
  • What is the effect on climate from these factors??
    15·1 answer
  • HELP ME ASAP!!!! PIC IS DOWN BELOW!
    8·2 answers
  • 1 + 1 + 1 + 2 equals to what​
    7·2 answers
  • BRAINLEST FOR CORRECT ANSWER PLEASE
    14·1 answer
  • Le Which describes how light waves can interact with wood?
    14·1 answer
  • HEEEEELLLPPPPPP!!!!!!!!!!! PPPPPPPPPPPLLLEAASSEE!!!
    6·1 answer
  • A dry cell gives static electricity true or false?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!