Answer:
The speed of the water shoot out of the hole is 20 m/s.
(d) is correct option.
Explanation:
Given that,
Height = 20 m
We need to calculate the velocity
Using formula Bernoulli equation

Where,
v₁= initial velocity
v₂=final velocity
h₁=total height
h₂=height of the hole from the base
Put the value into the formula




Hence, The speed of the water shoot out of the hole is 20 m/s.
The de Broglie wavelength
m
We know that
de Broglie wavelength =
m
<h3>
What is de Broglie wavelength?</h3>
According to the de Broglie equation, matter can behave like waves, much like how light and radiation do, which are both waves and particles. A beam of electrons can be diffracted just like a beam of light, according to the equation. The de Broglie equation essentially clarifies the notion of matter having a wavelength.
Therefore, whether a particle is tiny or macroscopic, it will have a wavelength when examined.
The wave nature of matter can be seen or observed in the case of macroscopic objects.
To learn more about de Broglie wavelength with the given link
brainly.com/question/17295250
#SPJ4
Yes ggejekkekwujhhnjhhdndnksiiieinrnnfjdjjnnsnndnbduiiitnnfnsoqoosofndbdod
Answer:
The magnitude of the force that each wire exerts on the other will increase by a factor of two.
Explanation:
force on parallel current carrying wire, F = BILsinθ
where;
B is the strength of the magnetic field
L is the length of the wire
I is the magnitude of current on the wire
θ is the angle of inclination of the wire
Assuming B, L and θ is constant, then F ∝ I
F = kI

When the amount of current is doubled in one of the wires, lets say the second wire;

Also, if will double the amount of current on the first wire, then
F₁ = 2F₂
Therefore, the magnitude of the force that each wire exerts on the other will increase by a factor of two.
It can be transferred by I, II, and III
Hope this helps ! :}