1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
2 years ago
14

The figure below shows the ideal pattern of movement of a herd of cattle, with the arrows showing the movement of the handler as

he moves the herd. The arc the handler makes from the starting point to the return point should be a quarter of a circle:
A sector showing a quarter of a circle is drawn. The radius is marked as 85 feet. The endpoints of the arc of the sector are ma

Based on this theory, what distance will the handler move from the starting point to the return point if he creates an arc of a circle of radius 85 feet? (6 points)

Group of answer choices

21.25 feet

133.45 feet

66.73 feet

88.97 feet
Mathematics
1 answer:
Lyrx [107]2 years ago
8 0

Answer:

133.45

Step-by-step explanation:

They are looking for arc length. The formula is

\frac{n}{360} * 2πr

a quarter circle is 90°, so put 90 for n. 85 is the radius, so put that for r.

\frac{90}{360} * 2 π (85)

133.45

You might be interested in
Study the numerical expression (4 x 10) + 8. Which one of the following expressions is equivalent to this numerical expression?
Alexxx [7]

Answer:

C

Step-by-step explanation:

7 0
3 years ago
Please help me to prove this!​
Ymorist [56]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π              → A + B = π - C

                                              → B + C = π - A

                                              → C + A = π - B

                                              → C = π - (B +  C)

Use Sum to Product Identity:  cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Sum/Difference Identity: cos (A - B) = cos A · cos B + sin A · sin B

Use the Double Angle Identity: sin 2A = 2 sin A · cos A

Use the Cofunction Identity: cos (π/2 - A) = sin A

<u>Proof LHS → Middle:</u>

\text{LHS:}\qquad \qquad \cos \bigg(\dfrac{A}{2}\bigg)+\cos \bigg(\dfrac{B}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Sum to Product:}\qquad 2\cos \bigg(\dfrac{\frac{A}{2}+\frac{B}{2}}{2}\bigg)\cdot \cos \bigg(\dfrac{\frac{A}{2}-\frac{B}{2}}{2}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)\\\\\\.\qquad \qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{C}{2}\bigg)

\text{Given:}\qquad \quad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi -(A+B)}{2}\bigg)

\text{Sum/Difference:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{2}\bigg)

\text{Double Angle:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{2(A+B)}{2(2)}\bigg)\\\\\\.\qquad \qquad  \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+2\sin \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)

\text{Factor:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\sin \bigg(\dfrac{A+B}{4}\bigg)\bigg]

\text{Cofunction:}\quad  =2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[ \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{\pi}{2}-\dfrac{A+B}{4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =2\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{A-B}{4}\bigg)+\cos \bigg(\dfrac{2\pi-(A+B)}{4}\bigg)\bigg]

\text{Sum to Product:}\ 2\cos \bigg(\dfrac{A+B}{4}\bigg)\bigg[2 \cos \bigg(\dfrac{2\pi-2B}{2\cdot 4}\bigg)\cdot \cos \bigg(\dfrac{2A-2\pi}{2\cdot 4}\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)

\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{\pi -C}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -A}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)

LHS = Middle \checkmark

<u>Proof Middle → RHS:</u>

\text{Middle:}\qquad 4\cos \bigg(\dfrac{\pi -A}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi-B}{4}\bigg)\cdot \cos \bigg(\dfrac{\pi -C}{4}\bigg)\\\\\\\text{Given:}\qquad \qquad 4\cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)\cdot \cos \bigg(\dfrac{A+B}{4}\bigg)\\\\\\.\qquad \qquad \qquad =4\cos \bigg(\dfrac{A+B}{4}\bigg)\cdot \cos \bigg(\dfrac{B+C}{4}\bigg)\cdot \cos \bigg(\dfrac{C+A}{4}\bigg)

Middle = RHS \checkmark

3 0
3 years ago
Linear functions are expressed by data in a table and by a graph. Select all that apply.
vovangra [49]

The function expressed in the graph has a steeper slope than the function in the table.

and

The y-intercept is the same for both functions.

I just completed this assignment for edge.

5 0
3 years ago
Read 2 more answers
4-3x2 + x2 + 5x – 7)
kompoz [17]

Answer:

7x - 9

Step-by-step explanation:

1: Multiply the numbers

4 - 3 x 2 + 2x + 5x - 7

4 - 6 + 2x + 5x - 7

2: Add the numbers

4 - 6 + 2x + 5x - 7

-9 + 2x + 5x

3: Combine like terms

-9 + 2x + 5x

-9 + 7x

4: Rearange terms

-9 + 7x

7x - 9

Solution

7x - 9

Can i be brainliest

4 0
3 years ago
Evaluate 4-0.25g+0.5h when g=10 and h=5
skad [1K]

Answer:

4

Step-by-step explanation:

4 - 0.25g + 0.5h = 4 - 0.25(10) + 0.5(5) = 4 - 2.5 + 2.5 = 1.5 + 2.5 = 4

8 0
4 years ago
Read 2 more answers
Other questions:
  • I need help been struggling in Math 3
    15·2 answers
  • Factor 35d + 5d 2 - 30. 5(d2 - 7d + 6) 5(d2 - 7d - 6) 5(d2 + 7d - 6)
    9·2 answers
  • Select the type of equations
    8·2 answers
  • Help math homework both questions
    7·1 answer
  • Amswer this question
    10·1 answer
  • I’m confused please help
    15·1 answer
  • Interest on $2630 at 3% compounded annually for five years is?
    12·1 answer
  • A bicycle was priced at $400
    9·1 answer
  • Ayuden plis son comparasiones en español plis
    12·1 answer
  • A plumber changes a set fee for each house call plus an hourly rate , as shown by the graph above.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!