We have a right triangle. We know the hypotenuse (75 ft) and an angle of 35°. We need to find the opposite leg to the angle of 35° (h). The trigonometric function that relates the opposite leg to an angle with the hypotenuse is sine:
sin 35° = (Opposite leg to 35°) / hypotenuse
sin 35° = h/(75 ft)
Solving for h:
(75 ft) sin 35°=h
h=75 sin 35° ft
h=75 (0.573576436) ft
h=43.01823270 ft
h=43 ft
Answer: T<span>he bottom of the balloon is 43 ft from the ground</span>
Answer:a) 54/55
b) 100/110
c) 99/110
Step-by-step explanation:
a)Probability of ordering 4= 9/12×3/11×2/10×1/9 = 54/11880
Probability of 4 good units= 4 × 54/11880
= 216/11880
1/55
1-(1/55) = 54/55
b)Probability of 2 good units= 2 × 54/(11880)
= 108/11880
= 1/110
1- (1/110)= 100/110
c) Probability of exactly 2 units not good= 1 -(100/110) =99/110
Add 3/4 foot to 2/12 foot. The LCD here is 12.
Thus, add 9/12 foot to 2/12 foot. Answer: 11/12 foot.
Are you sure you copied down that "2/12" correctly? Note that 2/12 = 1/6
Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:

5(d + 7)
multiply 5 to d, then to 7
5d + 35