Answer:
Step-by-step explanation:
10
There are two ways to do this
Method 1:
Find (f-g)(x) first
(f-g)(x) = f(x) - g(x)
(f-g)(x) = (5x^2+3) - (-2x+4)
(f-g)(x) = 5x^2+3+2x-4
(f-g)(x) = 5x^2+2x-1
Then plug in x = -3
(f-g)(-3) = 5(-3)^2+2(-3)-1
(f-g)(-3) = 5(9)+2(-3)-1
(f-g)(-3) = 45-6-1
(f-g)(-3) = 39-1
(f-g)(-3) = 38
-----------------------------------------
Method 2:
Find f(-3)
f(x) = 5x^2+3
f(-3) = 5(-3)^2+3
f(-3) = 5(9)+3
f(-3) = 45+3
f(-3) = 48
Find g(-3)
g(x) = -2x+4
g(-3) = -2(-3)+4
g(-3) = 6+4
g(-3) = 10
Subtract the two results
(f-g)(-3) = f(-3) - g(-3)
(f-g)(-3) = 48 - 10
(f-g)(-3) = 38
-----------------------------------------
Whichever method you pick, the answer is: 38
Answer:
2.8
Step-by-step explanation:
1) find the mean of the data set. = 15
2) find the abs value of the diff between each data value and the mean: |data value – mean|.
|10-15|=5, |20-15|=5, |15-15|=0, |17-15|=2, |13-15|=2
3) find the sum of the abs values of the diff = 14
4) divide the sum of the abs value by the number of data values = 14/5 = 2.8