Answer:
a) 53 MPa, 14.87 degree
b) 60.5 MPa
Average shear = -7.5 MPa
Explanation:
Given
A = 45
B = -60
C = 30
a) stress P1 = (A+B)/2 + Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 + Sqrt ({(45-(-60))/2}^2 + 30)
P1 = 53 MPa
Likewise P2 = (A+B)/2 - Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 - Sqrt ({(45-(-60))/2}^2 + 30)
P1 = -68 MPa
Tan 2a = C/{(A-B)/2}
Tan 2a = 30/(45+60)/2
a = 14.87 degree
Principal stress
p1 = (45+60)/2 + (45-60)/2 cos 2a + 30 sin2a = 53 MPa
b) Shear stress in plane
Sqrt ({(45-(-60))/2}^2 + 30) = 60.5 MPa
Average = (45-(-60))/2 = -7.5 MPa
The power that must be supplied to the motor is 136 hp
<u>Explanation:</u>
Given-
weight of the elevator, m = 1000 lb
Force on the table, F = 500 lb
Distance, s = 27 ft
Efficiency, ε = 0.65
Power = ?
According to the equation of motion:
F = ma

a = 16.1 ft/s²
We know,

To calculate the output power:
Pout = F. v
Pout = 3 (500) * 29.48
Pout = 44220 lb.ft/s
As efficiency is given and output power is known, we can calculate the input power.
ε = Pout / Pin
0.65 = 44220 / Pin
Pin = 68030.8 lb.ft/s
Pin = 68030.8 / 500 hp
= 136 hp
Therefore, the power that must be supplied to the motor is 136 hp