What the given passage is saying about the relationship between sustainability and responsibility is that;
C: We should only consider products or services to be green if their broad impact can be considered so.
<h3>Sustainability</h3>
From the passage, we see a write up questioning if the things we term to be green are truly green.
Now, from the passage, we see that a biofuel that is considered to be green is not really green if we consider that if it requires massive overproduction, it could wreck the water table.
Also, he says that if the production is local but also wasteful then it is not green.
Thus, we can see clearly that before we term a product or service as green, we should also consider their broad impact on the environment.
Read more about sustainability at; brainly.com/question/14154063
Answer:The answer is Potassium!
Explanation: This is true because each label should tell you about the available amount of a certain element. The standard order is Nitrogen-Phosphorus-Potassium. They are referred to by their standard abbreviations in the periodic table. One problem with fertilizer labels are that they are only required to disclose the amounts of macronutrients (or Nitrogen-Phosphorus-Potassium.)
Answer:
Schematics
Explanation:
A schematic is a detailed structured diagram or drawing. It employs illustrations to help the viewer understand detailed information on the machine or object being described. Its main aim is not to help the observer know what the object looks like physically. It is rather aimed at helping the viewer know how the machine works. This is achieved by only including key and important details to the drawing.
It is most times used in the blueprint and user guides of machines and gadgets used in the home to help users know how these things work so that they can do little fixings should there be such needs.
Answer:
Stat PVC = Stat(82+98.5)
Stat PVT = Stat(59+71.5)
Explanation
PVI = 71 + 35
Let G1 = Grade 1; G2 = Grade 2
G1 = +2.1% ; G2 = -3.4%
Highest point of curve at station = 74 + 10
General equation of a curve:

At highest point of the curve 


Station PVT
