1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
11

A local surf report provides the height of the wave from the trough to the crest of the wave. How does this relate to the wave’s

amplitude?
Engineering
1 answer:
gulaghasi [49]3 years ago
7 0

Answer:

The relationship between the provided height of the wave from the trough to the crest of the wave and the wave's amplitude is;

It is about twice the wave amplitude

Explanation:

The amplitude of a wave is the measured distance of a particle on the wave  that moves from the rest position to the point of maximum displacement. Hence it is the distance between the crest or through and the rest position

Therefore, as the surf report provides the height of the wave from the through to the crest of the wave, it is twice about twice the wave amplitude.

You might be interested in
Which traditional subject is part of construction management or construction science syllabi?
N76 [4]

Answer:mathematics

Explanation:

4 0
3 years ago
Ayo, how do I change my username on here?
nydimaria [60]

Answer:

I'm not sure

Explanation:

eeeeeeeeeeeeeeeeeeeeeee

4 0
3 years ago
Answer true or false 3.Individual people decide what will be produced in a command<br> oconomy
Pie

Answer:

False

Explanation:

The government decides the productions.

7 0
3 years ago
Read 2 more answers
Help please its due today will mark you brainliest
Tems11 [23]

Answer:

launch- The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit

powered ascent-The first stage is ignited at launch and burns through the powered ascent until its propellants are exhausted. The first stage engine is then extinguished, the second stage separates from the first stage, and the second stage engine is ignited. The payload is carried atop the second stage into orbit

coasting flight-

When the rocket runs out of fuel, it enters a coasting flight. The vehicle slows down under the action of the weight and drag since there is no longer any thrust present. The rocket eventually reaches some maximum altitude which you can measure using some simple length and angle measurements and trigonometry.

ejection charge-At the end of the delay charge, an ejection charge is ignited which pressurizes the body tube, blows the nose cap off, and deploys the parachute. The rocket then begins a slow descent under parachute to a recovery. The forces at work here are the weight of the vehicle and the drag of the parachute.

slow decent- slow downs (i guess)

recovery-A recovery period is typically characterized by abnormally high levels of growth in real gross domestic product, employment, corporate profits, and other indicators. This is a turning point from contraction to expansion and often results in an increase in consumer confidence

Explanation:

6 0
4 years ago
A smooth sphere with a diameter of 6 inches and a density of 493 lbm/ft^3 falls at terminal speed through sea water (S.G.=1.0027
Pachacha [2.7K]

Given:

diameter of sphere, d = 6 inches

radius of sphere, r = \frac{d}{2} = 3 inches

density,  \rho} = 493 lbm/ ft^{3}

S.G = 1.0027

g = 9.8 m/ m^{2} = 386.22 inch/ s^{2}

Solution:

Using the formula for terminal velocity,

v_{T} = \sqrt{\frac{2V\rho  g}{A \rho C_{d}}}              (1)

(Since, m = V\times \rho)

where,

V = volume of sphere

C_{d} = drag coefficient

Now,

Surface area of sphere, A = 4\pi r^{2}

Volume of sphere, V = \frac{4}{3} \pi r^{3}

Using the above formulae in eqn (1):

v_{T} = \sqrt{\frac{2\times \frac{4}{3} \pir^{3}\rho  g}{4\pi r^{2} \rho C_{d}}}

v_{T} = \sqrt{\frac{2gr}{3C_{d}}}  

v_{T} = \sqrt{\frac{2\times 386.22\times 3}{3C_{d}}}

Therefore, terminal velcity is given by:

v_{T} = \frac{27.79}{\sqrt{C_d}} inch/sec

3 0
3 years ago
Other questions:
  • This problem demonstrates aliasing. Generate a 512-point waveform consisting of 2 sinusoids at 200 and 400-Hz. Assume a sampling
    8·1 answer
  • Sophia is designing a new welding shop for the local high school. Where should the compressed gas and fuel cylinders be stored?
    15·1 answer
  • Which of the following is true Select one: a. HTML stands for Hyper Text Markup Language is a language for describing web pages
    6·1 answer
  • A 1200-kg car moving at 20 km/h is accelerated
    5·1 answer
  • Resistors of 150 Ω and 100 Ω are connected in parallel. What is their equivalent resistance?
    13·1 answer
  • Con que otro nombre se le conoce a los delitos informaticos
    5·1 answer
  • list out main types of material used in design and Manufacture of product give one example for each in engineering application ?
    10·1 answer
  • Explain the concept of energy conversion as applied to the generation of electricity also known as electrical energy​
    9·1 answer
  • Explain race condition..<br><br>don't spam..​
    13·2 answers
  • Which alpha-numeric designator, systematically assigned at the time of manufacture, identifies the manufacturer, month, year, lo
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!