Answer:
It is stretch.
I hope it helps a little bit.
There are a few answers but an example of one could be 7^10 * 7^5
hope this helps
Problem 7: Correct
Problem 8: Correct
Problem 9: Correct
The steps are below if you are curious
===========================================================================================
Problem 7
S = 180*(n-2)
2340 = 180*(n-2)
2340/180 = n-2
13 = n-2
n-2 = 13
n = 13+2
n = 15
I'm using n in place of lowercase s, but the idea is the same. If anything, it is better to use n for the number of sides since S already stands for the sum of the interior angles. I'm not sure why your teacher decided to swap things like that.
===========================================================================================
Problem 8
First find y
y+116 = 180
y+116-116 = 180-116
y = 64
which is then used to find x. The quadrilateral angles add up to 180*(n-2) = 180*(4-2) = 360 degrees
Add up the 4 angles, set the sum equal to 360, solve for x
x+y+125+72 = 360
x+64+125+72 = 360 ... substitution (plug in y = 64)
x+261 = 360
x+261-261 = 360-261
x = 99
===========================================================================================
Problem 9
With any polygon, the sum of the exterior angles is always 360 degrees
The first two exterior angles add to 264. The missing exterior angle is x
x+264 = 360
x+264-264 = 360-264
x = 96
500 and 100 because if you see the seven right, seven is the judge and so as the one. Make it 500 and the next number 100. So you'll have en estimate of 600. Ur welcome.
Answer:
i honestly dk but need help
Step-by-step explanation:
ls