Answer:
25 Seconds.
Step-by-step explanation:
You need to know how many seconds it takes to read the bottom of the lake.
If, each second, the anchor is falling 0.7 feet, then you need to know how many times it falls 0.7 feet.
This is done by dividing 17.5 by 0.7, which is 25 seconds.
Josh's monthly fuel expenses are $1,050.
<h3><u>Prices</u></h3>
Given that Josh is looking to get a new car because he decided he was spending too much on gas, and over the past year he found that he drove 7,700 miles, and at current gas prices of $4.5 he was getting about 27 miles per gallon, To determine, if he bought a vehicle that realizes 33 miles per gallon, what might be a reasonable estimate of monthly gas costs, the following calculation must be made:
- 27 = 100
- 33 = X
- 3300 / 27 = X
- 122.22 = X
- 122.22 = 100
- 100 = X
- 10000 / 122.22 = X
- 81.81 = X
- (7700 / 33) x 4.5 = X
- 233.33 x 4.5 = X
- 1050 = X
Therefore, Josh's monthly fuel expenses are $1,050.
Learn more about prices in brainly.com/question/18117910
#SPJ1
Answer:
b
Step-by-step explanation:
plz mark brainliest
Given the following information:
![\begin{tabular} {|p{1.5cm}|p{1.5cm}|p{1.2cm}|p{1.2cm}|p{1.2cm}|} \multicolumn{1}{|p{1.5cm}|}{State of economy}\multicolumn{1}{|p{2.6cm}|}{Probability of State of economy}\multicolumn{3}{|p{4.8cm}|}{Rate of Return if State Occurs}\\[1ex] \multicolumn{1}{|p{1.5cm}|}{}\multicolumn{1}{|p{2.6cm}|}{}\multicolumn{1}{|c|}{Stock A}&StockB&Stock C\\[2ex] \multicolumn{1}{|p{1.5cm}|}{Boom}\multicolumn{1}{|p{2.6cm}|}{0.66}\multicolumn{1}{|p{1.27cm}|}{0.09}&0.03&0.34\\ \end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cp%7B1.5cm%7D%7Cp%7B1.5cm%7D%7Cp%7B1.2cm%7D%7Cp%7B1.2cm%7D%7Cp%7B1.2cm%7D%7C%7D%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7BState%20of%20economy%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7BProbability%20of%20State%20of%20economy%7D%5Cmulticolumn%7B3%7D%7B%7Cp%7B4.8cm%7D%7C%7D%7BRate%20of%20Return%20if%20State%20Occurs%7D%5C%5C%5B1ex%5D%20%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7B%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7B%7D%5Cmulticolumn%7B1%7D%7B%7Cc%7C%7D%7BStock%20A%7D%26StockB%26Stock%20C%5C%5C%5B2ex%5D%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7BBoom%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7B0.66%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.27cm%7D%7C%7D%7B0.09%7D%260.03%260.34%5C%5C%0A%5Cend%7Btabular%7D)

Part A:
The expected return on an equally
weighted portfolio of these three stocks is given by:
![0.66[0.33 (0.09) + 0.33 (0.03) + 0.33(0.34)] \\ +0.34[0.33 (0.23) + 0.33(0.29) +0.33(-0.14)] \\ \\ =0.66(0.0297 + 0.0099 + 0.1122)+0.34(0.0759+0.0957-0.0462) \\ \\ =0.66(0.1518)+0.34(0.1254)=0.1002+0.0426=0.1428=\bold{14.28\%}](https://tex.z-dn.net/?f=0.66%5B0.33%20%280.09%29%20%2B%200.33%20%280.03%29%20%2B%200.33%280.34%29%5D%20%5C%5C%20%2B0.34%5B0.33%20%280.23%29%20%2B%200.33%280.29%29%20%2B0.33%28-0.14%29%5D%20%5C%5C%20%20%5C%5C%20%3D0.66%280.0297%20%2B%200.0099%20%2B%200.1122%29%2B0.34%280.0759%2B0.0957-0.0462%29%20%5C%5C%20%20%5C%5C%20%3D0.66%280.1518%29%2B0.34%280.1254%29%3D0.1002%2B0.0426%3D0.1428%3D%5Cbold%7B14.28%5C%25%7D)
Part B:
Value of a portfolio invested 21
percent each in A and B and 58 percent in C is given by
For boom: 0.21(0.09) + 0.21(0.03) + 0.58(0.34) = 0.0189 + 0.0063 + 0.1972 = 0.2224 or 22.24%.
For bust: = 0.21(0.23) + 0.21(0.29) + 0.58(-0.14) = 0.0483 + 0.0609 - 0.0812 = 0.028 or 2.8%
Expected return = 0.66(0.2224) + 0.34(0.028) = 0.1468 + 0.00952 = 0.1563 or 15.63%
The variance is given by
Answer:
63
Step-by-step explanation:
12x6=72
72-9=63
the answer is 63