A=x(1+r/n)^nt
21150=x(1+0.032/12)^84
21150=x(1+0.0026666)^84
21150=x(1.002666666)^84
21150=x(1.25069809)
21150/1.25069809=x
16910.56=x
Hope this helps!
Answer:
Step-by-step explanation:
6x - 5y = 15....... (1)
x=y+3..........(2)
Putting (2) in (1)
6(y + 3) - 5y = 15
6y + 18 - 5y = 15
6y - 5y = 15 - 18
y = -3
And x = y + 3
x = -3 + 3
x = 0
Your total after tax is $30.12
A 20% tip is approximately $5.50 ($5.67)
We will start with plotting the x coordinates and y coordinates on the graph
The points 1, 2; 2, 2; 3, 2; 4, 2 have been plotted on the graph which has been attached as an image to the solution.
We can see that the value of y is staying constant (2) for all values of x.
Hence, the points represent the equation y = 2.
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.