1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivahew [28]
2 years ago
14

In a recent year, the scores for the reading portion of a test were normally distributed, with a mean of 22.4 and a standard dev

iation of 5.1. Complete parts (a) through (d) below.
(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 19.
The probability of a student scoring less than 19 is.
(Round to four decimal places as needed.)
(b) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is between 17.7 and 27.1.
The probability of a student scoring between 17.7 and 27.1 is.
(Round to four decimal places as needed.)
(c) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is more than 33.1.
The probability of a student scoring more than 33.1 is
3.1
is.
(Round to four decimal places as needed.)
(d) Identify any unusual events. Explain your reasoning. Choose the correct answer below.
OA. None of the events are unusual because all the probabilities are greater than 0.05.
B. The event in part (c) is unusual because its probability is less than 0.05.
C. The events in parts (a) and (b) are unusual because its probabilities are less than 0.05.
D. The event in part (a) is unusual because its probability is less than 0.05.
Help me solve this

Mathematics
1 answer:
Dovator [93]2 years ago
8 0

Using the normal distribution, we have that:

a) The probability of a student scoring less than 19 is 0.2709 = 27.09%.

b) The probability of a student scoring between 17.7 and 27.1 is 0.6424 = 64.24%.

c) The probability of a student scoring more than 33.1 is 0.0179 = 1.79%.

d) The correct option is: B. The event in part (c) is unusual because its probability is less than 0.05.

<h3>Normal Probability Distribution</h3>

The z-score of a measure X of a normally distributed variable with mean \mu and standard deviation \sigma is given by:

Z = \frac{X - \mu}{\sigma}

  • The z-score measures how many standard deviations the measure is above or below the mean.
  • Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.

The mean and the standard deviation are given, respectively, by:

\mu = 22.4, \sigma = 5.1

Item a:

The probability is the <u>p-value of Z when X = 19</u>, hence:

Z = \frac{X - \mu}{\sigma}

Z = \frac{19 - 22.4}{5.1}

Z = -0.67.

Z = -0.67 has a p-value of 0.2709.

The probability of a student scoring less than 19 is 0.2709 = 27.09%.

Item b:

The probability is the <u>p-value of Z when X = 27.1 subtracted by the p-value of Z when X = 17.7</u>, hence:

X = 27.1:

Z = \frac{X - \mu}{\sigma}

Z = \frac{27.1 - 22.4}{5.1}

Z = 0.92.

Z = 0.92 has a p-value of 0.8212.

X = 17.7:

Z = \frac{X - \mu}{\sigma}

Z = \frac{17.7 - 22.4}{5.1}

Z = -0.92.

Z = -0.92 has a p-value of 0.1788.

0.8212 - 0.1788 = 0.6424.

The probability of a student scoring between 17.7 and 27.1 is 0.6424 = 64.24%.

Item c:

The probability is <u>one subtracted by the p-value of Z when X = 33.1</u>, hence:

Z = \frac{X - \mu}{\sigma}

Z = \frac{33.1 - 22.4}{5.1}

Z = 2.1.

Z = 2.1 has a p-value of 0.9821.

1 - 0.9821 = 0.0179.

The probability of a student scoring more than 33.1 is 0.0179 = 1.79%.

Item d:

Probabilities less than 0.05 are unusual, hence the correct option is:

B. The event in part (c) is unusual because its probability is less than 0.05.

More can be learned about the normal distribution at brainly.com/question/28135235

#SPJ1

You might be interested in
A trapezoid has a base of two and six and an area of 24 square units. What is the height?
Nezavi [6.7K]

\bf \textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} a,b=&\stackrel{bases}{parallel}\\ &sides\\ h=&height\\ \cline{1-2} a=&2\\ b=&6\\ A=&24 \end{cases}\implies 24=\cfrac{h(2+6)}{2}\implies 24=\cfrac{h(8)}{2} \\\\\\ 24=4h\implies \cfrac{24}{4}=h\implies 6=h

8 0
3 years ago
6.
Alika [10]

Answer:

30:54

Step-by-step explanation:

5x6=30 and 9x6=54 and because I took the test on edge

6 0
3 years ago
2C, On Main Street in Springfield, the first house is numbered 13, and each house number is 4 more than the house right before i
Nadya [2.5K]

Subtract the first house number from hers:

221 - 13 = 208

Divide that by the difference between each number:

208/4 = 52

Now add the first house:

52 + 1 = 53

There are 53 houses

6 0
3 years ago
Number 2 and number 3
Novosadov [1.4K]
The correct answer for 2 is the third choice and 3 is the second one
6 0
3 years ago
the value of a share of stock decreases in value at a rate of $1.20 per hour during the first 3.5 hours of trading. write and so
kvv77 [185]

Well since I don't know what the original value I'll label it as X. So your equation will start out as X - (1.20 x 1) which would be for every hour for a half hour just divide 1.20 / 2 to get your half an hour. (1.20 x 3) + 0.60. Should be easy if they want it in faction form than it would just be 1.20 x 3 1/2.

Hope this helps

7 0
4 years ago
Other questions:
  • Of the songs in joseph collection, 11/23 are country songs. of these country songs, 3/4 are by male artists. what fraction of jo
    12·1 answer
  • Why shouldn't you use double negatives? It's a riddle for my Math Class
    11·2 answers
  • Maxine spent 15 hours doing her homework last week. This week she spent 18 hours doing homework. She says that she spent 120% mo
    13·2 answers
  • Find four consecutive odd numbers which add to 88
    14·1 answer
  • Determine the singular points of the given differential equation. Classify each singular point as regular or irregular. (Enter y
    11·1 answer
  • 10 watermelons have an average weight of 4.3 pounds and 5 pumpkins have an average weight of 3.4 pounds. What is the average wei
    9·2 answers
  • What is the area of this parallelogram?
    6·1 answer
  • Please help!! Show your work!! Will mark brainliest!!
    14·2 answers
  • Maria is making a circular garden. She is planning to use metal edging material around the outside of the garden to keep the gra
    13·1 answer
  • Use the Fundamental Counting Principle to find the total number of possible outcomes.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!