P(most favorable outcome) = 1 -(0.03 +0.16 -0.01) = 0.82
_____
"repair fails" includes the "infection and failure" case, as does "infection". By adding the probability of "repair fails" and "infection", we count the "infection and failure" case twice. So, we have to subtract the probability of "infection and failure" from the sum of "repaire fails" and "infection" in order to count each bad outcome only once.
The probability of a good outcome is the complement of the probability of a bad outcome.
Answer:
X= -4
Step-by-step explanation:
^ you have to isolate the radical than raise each side to the power of its index which gets you
x= -4
Answer:
x = 1/3 ln(2)
Step-by-step explanation:
e^(3x)+6=8
Subtract 6 from each side
e^(3x)+6-6=8-6
e^(3x) = 2
Take the natural log of each side
ln (e ^3x) = ln (2)
3x = ln(2)
Divide by 3
3x/3 = 1/3 ln(2)
x = 1/3 ln(2)