Answer: C
Period/ Period of the pendulum.
Content:
Simple pendulum is a small diameter bob which is suspended from light cord or string. The string is strong enough to stretch.
Pendulums are quiet common in use such as clocks, swings etc.,
From the simple pendulum we can find conditions under which it performs simple harmonic motion and we can also derive the expressions for Period of pendulum, frequency etc.
<em>Period of a pendulum/Time period is given by the following expression</em>
<em> </em><em> T =2π.√(L/g) seconds </em>
<em> </em><em>T = period of pendulum in seconds</em>
<em> L = Length of the string/cord in meters</em>
<em> g = gravitational force in m/s² ( g = 9.8 m/s² )</em>
<em>Period of pendulum is independent on mass of the bob.</em>
<em>So, The relation between length of the cord and gravity is used to determine the period of pendulum</em>
Answer:
Net forces which pushes the window is 30342.78 N.
Explanation:
Given:
Dimension of the office window.
Length of the window =
m
Width of the window =
m
Area of the window = 
Difference in air pressure = Inside pressure - Outside pressure
=
atm =
atm
Conversion of the pressure in its SI unit.
⇒
atm =
Pa
⇒
atm =
Pa
We have to find the net force.
We know,
⇒ Pressure = Force/Area
⇒ 
⇒ 
⇒ Plugging the values.
⇒
⇒
Newton (N)
So,
The net forces which pushes the window is 30342.78 N.
For transverse waves, the waves move in perpendicular direction to the source of vibration. For longitudinal waves, the waves move in parallel direction to the source of vibration . They are similar in the sense that energy is transferred in the form of waves.
Answer:
snowshoes have a large surface area.
Explanation:
this distributes the weight of the person wearing them over a larger surface area, meaning that less downward pressure is applied to the snow which prevents the person sinking into the snow. This allows for easier travel in snow conditions :)
hope this helps!!