/ 357 + 71= 427 you’ve got to add it to get the sum of the numbers together
Answer:
I think its 6.25 (6 and 1/4) but I'm not a teacher or anything so it may be incorrect.
Answer:
a. 150
b. y=150x+1200
Step-by-step explanation:
a. 1350-1200=150
b. if he opened it in 2005 he started his tutoring fee at 1200 that makes 1200 the y intercept
Answer:
Step-by-step explanation:
The first parabola has vertex (-1, 0) and y-intercept (0, 1).
We plug these values into the given vertex form equation of a parabola:
y - k = a(x - h)^2 becomes
y - 0 = a(x + 1)^2
Next, we subst. the coordinates of the y-intercept (0, 1) into the above, obtaining:
1 = a(0 + 1)^2, and from this we know that a = 1. Thus, the equation of the first parabola is
y = (x + 1)^2
Second parabola: We follow essentially the same approach. Identify the vertex and the two horizontal intercepts. They are:
vertex: (1, 4)
x-intercepts: (-1, 0) and (3, 0)
Subbing these values into y - k = a(x - h)^2, we obtain:
0 - 4 = a(3 - 1)^2, or
-4 = a(2)². This yields a = -1.
Then the desired equation of the parabola is
y - 4 = -(x - 1)^2
Answer:
4. A
5. B
Step-by-step explanation:
4. I'll solve question four first:
The two marked points on the line are (-2, -3)&(2, 5). Using the formula to find slope(y2-y1/x2-x1), substitute in the points.
5--3/2--2 or 8/4;simplified to 2/1 or 2.
Now use point-slope form: y-y1 = m(x-x1)
y--3 = 2(x--2): Substitute in the values of y1, m, and x1.
y+3 = 2x + 4: Distribute.
y = 2x + 1: Subtract three from both sides.
5. Do the same for question 5.
The first point is (-4, 2), the second point is (4, -1).
-1-2/4--4; -3/8.
Now use point-slope form:
y-2 = -3/8x -12/8: Substitute in the values of x1, y1, m, and distribute the slope to the parentheses.
y = -3/8x + 1/2