Answer:
Gradient (slope) is 5.
Step-by-step explanation:
To find the gradient (slope) of a curve graph at x = x₁ can be done by steps following:
- Differentiate the function - this is to find a gradient (slope) at any points (technically function of slope)
- Substitute x = x₁ in the derived function - you'll receive a slope at x = x₁ point.
First, derive the given function which is:
![\displaystyle{y = (\sqrt{x}+3)(3\sqrt{x}-5)](https://tex.z-dn.net/?f=%5Cdisplaystyle%7By%20%3D%20%28%5Csqrt%7Bx%7D%2B3%29%283%5Csqrt%7Bx%7D-5%29)
Differentiation can be done two ways - go ahead and expand the expression then derive it or you can use the product rule where it states that ![\displaystyle{y'=u'v+uv'}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7By%27%3Du%27v%2Buv%27%7D)
I'll be using product rule:
![\displaystyle{y' = (\sqrt{x}+3)'(3\sqrt{x}-5)+(\sqrt{x}+3)(3\sqrt{x}-5)'}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7By%27%20%3D%20%28%5Csqrt%7Bx%7D%2B3%29%27%283%5Csqrt%7Bx%7D-5%29%2B%28%5Csqrt%7Bx%7D%2B3%29%283%5Csqrt%7Bx%7D-5%29%27%7D)
<em>Note that the following process will require you to have knowledge of Power Rules:</em>
<em />![\displaystyle{y = ax^n \to y' = nax^{n-1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7By%20%3D%20ax%5En%20%5Cto%20y%27%20%3D%20nax%5E%7Bn-1%7D%7D)
Hence:
![\displaystyle{y'=\dfrac{1}{2\sqrt{x}}(3\sqrt{x}-5) + (\sqrt{x}+3)\dfrac{3}{2\sqrt{x}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7By%27%3D%5Cdfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%283%5Csqrt%7Bx%7D-5%29%20%2B%20%20%28%5Csqrt%7Bx%7D%2B3%29%5Cdfrac%7B3%7D%7B2%5Csqrt%7Bx%7D%7D)
Now we know the derivative. Next, we find the slope at x = 1 which you substitute x = 1 in derived function:
![\displaystyle{y'(1)=\dfrac{1}{2\sqrt{1}}(3\sqrt{1}-5) + (\sqrt{1}+3)\dfrac{3}{2\sqrt{1}}}\\\\\displaystyle{y'(1)=\dfrac{1}{2}(3-5) + (1+3)\dfrac{3}{2}}\\\\\displaystyle{y'(1)=\dfrac{1}{2}(-2) + (4)\dfrac{3}{2}}\\\\\displaystyle{y'(1)=-1 + 2(3)}\\\\\displaystyle{y'(1)=-1 + 6}\\\\\displaystyle{y'(1)=5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7By%27%281%29%3D%5Cdfrac%7B1%7D%7B2%5Csqrt%7B1%7D%7D%283%5Csqrt%7B1%7D-5%29%20%2B%20%20%28%5Csqrt%7B1%7D%2B3%29%5Cdfrac%7B3%7D%7B2%5Csqrt%7B1%7D%7D%7D%5C%5C%5C%5C%5Cdisplaystyle%7By%27%281%29%3D%5Cdfrac%7B1%7D%7B2%7D%283-5%29%20%2B%20%20%281%2B3%29%5Cdfrac%7B3%7D%7B2%7D%7D%5C%5C%5C%5C%5Cdisplaystyle%7By%27%281%29%3D%5Cdfrac%7B1%7D%7B2%7D%28-2%29%20%2B%20%20%284%29%5Cdfrac%7B3%7D%7B2%7D%7D%5C%5C%5C%5C%5Cdisplaystyle%7By%27%281%29%3D-1%20%2B%20%202%283%29%7D%5C%5C%5C%5C%5Cdisplaystyle%7By%27%281%29%3D-1%20%2B%20%206%7D%5C%5C%5C%5C%5Cdisplaystyle%7By%27%281%29%3D5%7D)
Finally, we have found the slope or gradient at x = 1 which is 5.
Please let me know if you have any questions!