Answer:
C. 3, -7
Step-by-step explanation:
x^2 +4x-21 =0
Factor
What 2 numbers multiply to -21 and add to 4
7*-3 = -21
7-3 = 4
(x+7) (x-3) =0
Using the zero product property
x+7 =0 x-3=0
x+7-7=0-7 x-3+3=0+3
x = -7 x=3
Step-by-step answer:
This is a regular heptagon, means it has 7 <em>congruent</em> sides and 7 <em>congruent </em>vertex angles.
To work with polygons, there is a very important piece of information that you must know to solve the majority of related problems.
This is:
sum of exterior angles of polygons = 360 degrees.
If you don't remember the 360 degrees, think of the sum of exterior angles of an equilateral triangle, which is 3*(180-60)=3*120=360! It works!
For a regular heptagon, c = 360/7=51.43 degrees approx.
This means that each vertex angle measures
vertex angle = 180-c
So since 2d+the vertex angle = 360, we have
2d+(180-c)=360
solve for d:
2d=360-(180-c)=180+c
d=(180+c)/2=90+c/2=115.71 degrees. (approx.)
Answers:
10.) ![\displaystyle \pm{5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cpm%7B5%7D)
9.) ![\displaystyle 1\frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%201%5Cfrac%7B1%7D%7B2%7D)
8.) ![\displaystyle \pm{1\frac{1}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cpm%7B1%5Cfrac%7B1%7D%7B2%7D%7D)
7.) ![\displaystyle \pm{1\frac{1}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cpm%7B1%5Cfrac%7B1%7D%7B2%7D%7D)
6.) ![\displaystyle \pm{\frac{1}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cpm%7B%5Cfrac%7B1%7D%7B2%7D%7D)
Step-by-step explanations:
10.) ![\displaystyle \frac{\sqrt{200}}{\sqrt{8}} \hookrightarrow \sqrt{25} \hookrightarrow \frac{\pm{10\sqrt{2}}}{\pm{2\sqrt{2}}} \\ \\ \boxed{\pm{5}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csqrt%7B200%7D%7D%7B%5Csqrt%7B8%7D%7D%20%5Chookrightarrow%20%5Csqrt%7B25%7D%20%5Chookrightarrow%20%5Cfrac%7B%5Cpm%7B10%5Csqrt%7B2%7D%7D%7D%7B%5Cpm%7B2%5Csqrt%7B2%7D%7D%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5Cpm%7B5%7D%7D)
9.) ![\displaystyle \frac{\sqrt[3]{135}}{\sqrt[3]{40}} \hookrightarrow \sqrt[3]{3\frac{3}{8}} \hookrightarrow \frac{3\sqrt[3]{5}}{2\sqrt[3]{5}} \\ \\ \boxed{1\frac{1}{2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csqrt%5B3%5D%7B135%7D%7D%7B%5Csqrt%5B3%5D%7B40%7D%7D%20%5Chookrightarrow%20%5Csqrt%5B3%5D%7B3%5Cfrac%7B3%7D%7B8%7D%7D%20%5Chookrightarrow%20%5Cfrac%7B3%5Csqrt%5B3%5D%7B5%7D%7D%7B2%5Csqrt%5B3%5D%7B5%7D%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7B1%5Cfrac%7B1%7D%7B2%7D%7D)
8.) ![\displaystyle \frac{\sqrt[4]{162}}{\sqrt[4]{32}} \hookrightarrow \sqrt[4]{5\frac{1}{16}} \hookrightarrow \frac{\pm{3\sqrt[4]{2}}}{\pm{2\sqrt[4]{2}}} \\ \\ \boxed{\pm{1\frac{1}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csqrt%5B4%5D%7B162%7D%7D%7B%5Csqrt%5B4%5D%7B32%7D%7D%20%5Chookrightarrow%20%5Csqrt%5B4%5D%7B5%5Cfrac%7B1%7D%7B16%7D%7D%20%5Chookrightarrow%20%5Cfrac%7B%5Cpm%7B3%5Csqrt%5B4%5D%7B2%7D%7D%7D%7B%5Cpm%7B2%5Csqrt%5B4%5D%7B2%7D%7D%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5Cpm%7B1%5Cfrac%7B1%7D%7B2%7D%7D%7D)
7.) ![\displaystyle \frac{\sqrt{63}}{\sqrt{28}} \hookrightarrow \sqrt{2\frac{1}{4}} \hookrightarrow \frac{\pm{3\sqrt{7}}}{\pm{2\sqrt{7}}} \\ \\ \boxed{\pm{1\frac{1}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csqrt%7B63%7D%7D%7B%5Csqrt%7B28%7D%7D%20%5Chookrightarrow%20%5Csqrt%7B2%5Cfrac%7B1%7D%7B4%7D%7D%20%5Chookrightarrow%20%5Cfrac%7B%5Cpm%7B3%5Csqrt%7B7%7D%7D%7D%7B%5Cpm%7B2%5Csqrt%7B7%7D%7D%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5Cpm%7B1%5Cfrac%7B1%7D%7B2%7D%7D%7D)
6.) ![\displaystyle \frac{\sqrt{12}}{\sqrt{48}} \hookrightarrow \sqrt{\frac{1}{4}} \hookrightarrow \frac{\pm{2\sqrt{3}}}{\pm{4\sqrt{3}}} \\ \\ \boxed{\pm{\frac{1}{2}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B%5Csqrt%7B12%7D%7D%7B%5Csqrt%7B48%7D%7D%20%5Chookrightarrow%20%5Csqrt%7B%5Cfrac%7B1%7D%7B4%7D%7D%20%5Chookrightarrow%20%5Cfrac%7B%5Cpm%7B2%5Csqrt%7B3%7D%7D%7D%7B%5Cpm%7B4%5Csqrt%7B3%7D%7D%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5Cpm%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D)
I am joyous to assist you at any time.
You can each order from: Column A- 6 times, Column B- 4 times
If the diameter is 18, the radius would be nine. Someone please tell me if I missed something.