Answer:
Step-by-step explanation:
Prove: That the sum of the squares of 4 consecutive integers is an even integer.
An integer is a any directed number that has no decimal part or indivisible fractional part. Examples are: 4, 100, 0, -20,-100 etc.
Selecting 4 consecutive positive integers: 5, 6, 7, 8. Then;
= 25
= 36
= 49
= 64
The sum of the squares = 25 + 36 + 49 + 64
= 174
Also,
Selecting 4 consecutive negative integers: -10, -11, -12, -13. Then;
= 100
= 121
= 144
= 169
The sum of the squares = 100 + 121 + 144 + 169
= 534
Therefore, the sum of the squares of 4 consecutive integers is an even integer.
1
A coefficient is the number attached to a variable (k). In front of k is an implied 1 because k*1=k. So the coefficient of the third terms is 1
<span>The two checkpoints are 4,920 ft. apart from each other. The total distance of the race is 15,840 ft. If checkpoint C half the distance between checkpoint B and the end of the race, the distance between Checkpoint B and the end of the race is 9,840 ft. Half of that distance is 4,920 ft.</span>
For section 3.01 black, number 1 is correct, but number 2 is wrong.
When you raise an exponent to an exponent, you multiply the 2 exponents.
(x^4)^5 is x^20.
Number 3 is also right.
For 3.02, you use the interest formula. (1 + i/100)^t times x
x is the amount of money you have originally. i is the interest rate, t is the time.
1,500(1.03)^5 = 1738.91111145
$1738.91
For section 3.01 red in fractional exponents the numerator are the powers and the denominator is the root.
![\sqrt[4]{a^{3} } = a^{\frac{3}{4} }](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Ba%5E%7B3%7D%20%7D%20%20%3D%20a%5E%7B%5Cfrac%7B3%7D%7B4%7D%20%7D)
38 is 10 times more than 3.8