Answer:
can be factored out as: 
Step-by-step explanation:
Recall the formula for the perfect square of a binomial :

Now, let's try to identify the values of
and
in the given trinomial.
Notice that the first term and the last term are perfect squares:

so, we can investigate what the middle term would be considering our
, and
:

Therefore, the calculated middle term agrees with the given middle term, so we can conclude that this trinomial is the perfect square of the binomial:

Answer: i think it is C
Step-by-step explanation: hpoe that helps!!!! :)
Answer:
(-3,1) dhdjdjdjdjejdhdjehehdhdjddjdjddh
(-3,1)
Answer:
2,5
Step-by-step explanation:
2 to the right and 5 up
<u>Given</u>:
Given that FGH is a right triangle. The sine of angle F is 0.53.
We need to determine the cosine of angle H.
<u>Cosine of angle H:</u>
Given that the sine of angle F is 0.53
This can be written as,

Applying the trigonometric ratio, we have;
----- (1)
Now, we shall determine the value of cosine of angle H.
Let us apply the trigonometric ratio
, we get;
----- (2)
Substituting the value from equation (1) in equation (2), we get;

Thus, the cosine of angle H is 0.53