1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
2 years ago
10

Evaluate the following integral (Calculus 2) Please show step by step explanation!

Mathematics
1 answer:
barxatty [35]2 years ago
6 0

Answer:

\dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{x^2}{\sqrt{25-x^2}}\:\:\text{d}x

Rewrite 25 as 5²:

\implies \displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=5 \sin \theta

\begin{aligned}\implies \sqrt{5^2-x^2} & =\sqrt{5^2-(5 \sin \theta)^2}\\ & = \sqrt{25-25 \sin^2 \theta}\\ & = \sqrt{25(1-\sin^2 \theta)}\\ & = \sqrt{25 \cos^2 \theta}\\ & = 5 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=5 \cos \theta

\implies \text{d}x=5 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x & = \int \dfrac{25 \sin^2 \theta}{5 \cos \theta}\:\:5 \cos \theta\:\:\text{d}\theta \\\\ & = \int 25 \sin^2 \theta\end{aligned}

Take out the constant:

\implies \displaystyle 25 \int \sin^2 \theta\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad \cos (2 \theta)=1 - 2 \sin^2 \theta

\implies \displaystyle 25 \int \dfrac{1}{2}(1-\cos 2 \theta)\:\:\text{d}\theta

\implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\cos kx$}\\\\$\displaystyle \int \cos kx\:\text{d}x=\dfrac{1}{k} \sin kx\:\:(+\text{C})$\end{minipage}}

\begin{aligned} \implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta & =\dfrac{25}{2}\left[\theta-\dfrac{1}{2} \sin 2\theta \right]\:+\text{C}\\\\ & = \dfrac{25}{2} \theta-\dfrac{25}{4}\sin 2\theta + \text{C}\end{aligned}

\textsf{Use the trigonometric identity}: \quad \sin (2 \theta)= 2 \sin \theta \cos \theta

\implies \dfrac{25}{2} \theta-\dfrac{25}{4}(2 \sin \theta \cos \theta) + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{25}{2}\sin \theta \cos \theta + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\sin \theta \cdot 5 \cos \theta + \text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{5} \textsf{ and }5 \cos \theta = \sqrt{25-x^2}:

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\cdot \dfrac{x}{5} \cdot \sqrt{25-x^2} + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

\textsf{Substitute back in } \theta=\arcsin \left(\dfrac{x}{5}\right) :

\implies \dfrac{25}{2} \arcsin \left(\dfrac{x}{5}\right) -\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

Take out the common factor 1/2:

\implies \dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Learn more about integration by trigonometric substitution here:

brainly.com/question/28157322

You might be interested in
Can you help me with my math
viktelen [127]

Answer:WHERE IS IT

Step-by-step explanation:

3 0
3 years ago
A computer processor costs $96.00. It is expected that in 8 months the processor will cost 3/4 its current price. How much will
Marysya12 [62]

Answer:

967.50

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Pierre stands on level ground at the point P, 5 metres from O.
GenaCL600 [577]
So hmm notice the picture below

thus    \bf \cfrac{4.24}{x}=\cfrac{2x+5}{2x}\implies 8.48x=2x^2+5x\implies 8.48x-5x=2x^2&#10;\\\\\\&#10;3.48x=2x^2\implies 0=2x^2-3.48x\implies 0=x(2x-3.48)&#10;\\\\\\&#10;&#10;\begin{cases}&#10;0=x\\&#10;----------\\&#10;0=2x-3.48\\&#10;3.48=2x\\\\&#10;\cfrac{3.48}{2}=x\\\\&#10;1.74=x&#10;\end{cases}

so, is clearly not 0, so it has to be 1.74

6 0
2 years ago
Please help! giving all the points I have!!! will give brainliest!!
Gala2k [10]
C, because once you add the texture up
7 0
3 years ago
BRAINLIEST!! LOT OF POINTS PLEASE HELP!!!! ON SAVVAS .
antiseptic1488 [7]

Answer:

A manufacturer can save money by making a can that maximizes volume and minimizes the amount of metal used. For a can with radius r and height h, this goal is reached when 2πr³ = πr²h. Part A Solve the equation for h.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • The box plot shows the number of sit-ups done by students in a gym class. What is the
    9·1 answer
  • -25 - 30 + 2 = pls help
    10·1 answer
  • Given the following functions, find g(f(x)). f(x) = 2x + 1 g(x) = x2 + 6​
    11·1 answer
  • Suppose heights of seasonal pine saplings are normally distributed and have a known population standard deviation of 17 millimet
    11·1 answer
  • At Silver Gym, membership is $45 per month, and personal training sessions are $35 each.
    10·1 answer
  • The travel time on a section of a Long Island Expressway (LIE) is normally distributed with a mean of 80 seconds and a standard
    14·1 answer
  • 7900 in standard form
    9·1 answer
  • I need help to solve please
    12·1 answer
  • What is the volume of a cylinder with base radius 4 and height 7?
    13·2 answers
  • Identify the type of figure
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!