Answer:

Step-by-step explanation:
<u>Fundamental Theorem of Calculus</u>

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.
Given indefinite integral:

Rewrite 25 as 5²:

<u>Integration by substitution</u>
<u />



Find the derivative of x and rewrite it so that dx is on its own:


<u>Substitute</u> everything into the original integral:

Take out the constant:





![\begin{aligned} \implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta & =\dfrac{25}{2}\left[\theta-\dfrac{1}{2} \sin 2\theta \right]\:+\text{C}\\\\ & = \dfrac{25}{2} \theta-\dfrac{25}{4}\sin 2\theta + \text{C}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Cimplies%20%5Cdisplaystyle%20%5Cdfrac%7B25%7D%7B2%7D%20%5Cint%20%281-%5Ccos%202%20%5Ctheta%29%5C%3A%5C%3A%5Ctext%7Bd%7D%5Ctheta%20%26%20%3D%5Cdfrac%7B25%7D%7B2%7D%5Cleft%5B%5Ctheta-%5Cdfrac%7B1%7D%7B2%7D%20%5Csin%202%5Ctheta%20%5Cright%5D%5C%3A%2B%5Ctext%7BC%7D%5C%5C%5C%5C%20%26%20%3D%20%5Cdfrac%7B25%7D%7B2%7D%20%5Ctheta-%5Cdfrac%7B25%7D%7B4%7D%5Csin%202%5Ctheta%20%2B%20%5Ctext%7BC%7D%5Cend%7Baligned%7D)









Take out the common factor 1/2:

Learn more about integration by trigonometric substitution here:
brainly.com/question/28157322