1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
2 years ago
10

Evaluate the following integral (Calculus 2) Please show step by step explanation!

Mathematics
1 answer:
barxatty [35]2 years ago
6 0

Answer:

\dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{x^2}{\sqrt{25-x^2}}\:\:\text{d}x

Rewrite 25 as 5²:

\implies \displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=5 \sin \theta

\begin{aligned}\implies \sqrt{5^2-x^2} & =\sqrt{5^2-(5 \sin \theta)^2}\\ & = \sqrt{25-25 \sin^2 \theta}\\ & = \sqrt{25(1-\sin^2 \theta)}\\ & = \sqrt{25 \cos^2 \theta}\\ & = 5 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=5 \cos \theta

\implies \text{d}x=5 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{x^2}{\sqrt{5^2-x^2}}\:\:\text{d}x & = \int \dfrac{25 \sin^2 \theta}{5 \cos \theta}\:\:5 \cos \theta\:\:\text{d}\theta \\\\ & = \int 25 \sin^2 \theta\end{aligned}

Take out the constant:

\implies \displaystyle 25 \int \sin^2 \theta\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad \cos (2 \theta)=1 - 2 \sin^2 \theta

\implies \displaystyle 25 \int \dfrac{1}{2}(1-\cos 2 \theta)\:\:\text{d}\theta

\implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\cos kx$}\\\\$\displaystyle \int \cos kx\:\text{d}x=\dfrac{1}{k} \sin kx\:\:(+\text{C})$\end{minipage}}

\begin{aligned} \implies \displaystyle \dfrac{25}{2} \int (1-\cos 2 \theta)\:\:\text{d}\theta & =\dfrac{25}{2}\left[\theta-\dfrac{1}{2} \sin 2\theta \right]\:+\text{C}\\\\ & = \dfrac{25}{2} \theta-\dfrac{25}{4}\sin 2\theta + \text{C}\end{aligned}

\textsf{Use the trigonometric identity}: \quad \sin (2 \theta)= 2 \sin \theta \cos \theta

\implies \dfrac{25}{2} \theta-\dfrac{25}{4}(2 \sin \theta \cos \theta) + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{25}{2}\sin \theta \cos \theta + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\sin \theta \cdot 5 \cos \theta + \text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{5} \textsf{ and }5 \cos \theta = \sqrt{25-x^2}:

\implies \dfrac{25}{2} \theta-\dfrac{5}{2}\cdot \dfrac{x}{5} \cdot \sqrt{25-x^2} + \text{C}

\implies \dfrac{25}{2} \theta-\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

\textsf{Substitute back in } \theta=\arcsin \left(\dfrac{x}{5}\right) :

\implies \dfrac{25}{2} \arcsin \left(\dfrac{x}{5}\right) -\dfrac{1}{2}x\sqrt{25-x^2} + \text{C}

Take out the common factor 1/2:

\implies \dfrac{1}{2} \left(25 \arcsin \left(\dfrac{x}{5}\right) -x\sqrt{25-x^2}\right) + \text{C}

Learn more about integration by trigonometric substitution here:

brainly.com/question/28157322

You might be interested in
What percent of 71 hours is 108 hours?
marta [7]

Answer:

jekjkjkjkldjkefjfff a

Step-by-step explanation:

6 0
3 years ago
When do I use the quadratic formula?
spayn [35]

Answer:

Step-by-step explanation:

Quadratic equations are commonly used in situations where two things are multiplied together and they both depend on the same variable. For example, when working with area, if both dimensions are written in terms of the same variable, you use a quadratic equation.

7 0
2 years ago
32. Parallelogram ABCD has vertices A(0,0), B(2,4), and C(10,4). Find the coordinates of D.
goblinko [34]

Answer:

The fourth vertex is D(8, 0)

Step-by-step explanation:

Let A(0, 0), B(2, 4), and C(10, 4) be the three vertices of a parallelogram ABCD and let its fourth vertex be D(a, b).

Join AC and BD. Let AC and BD intersect at point O.

  • We have known that the diagonals of a parallelogram bisect each other.  

So, O would be the midpoint of AC as well as that of BD.

A\left(0,\:0\right)=\left(x_1,\:x_2\:\right)

C\left(10,\:4\right)=\left(x_2,\:x_2\:\right)

The midpoint of AC is:

\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left(\frac{x_2+x_1}{2},\:\:\frac{y_2+y_1}{2}\right)

\left(x_1,\:y_1\right)=\left(0,\:0\right),\:\left(x_2,\:y_2\right)=\left(10,\:4\right)

=\left(\frac{10+0}{2},\:\frac{4+0}{2}\right)

=\left(5,\:2\right)

The midpoint of BD is:

=\left(\frac{a+2}{2},\:\frac{b+4}{2}\right)

so

∵  \frac{a+2}{2}=5

a+2=10

a=8

∵ \frac{b+4}{2}=2

b+4=4

b=0

Hence, the fourth vertex is D(8, 0)

4 0
3 years ago
Bag A contains 3 red and 2 white marbles
Paladinen [302]
Your question is incomplete.

If you want me to tell the ratio, its 3:2
4 0
4 years ago
Adding fractions <br><br> 1/4 + 2/3=
AnnyKZ [126]

Answer:

The addition of given fractions is \frac{11}{12}

Therefore \frac{1}{4}+\frac{2}{3}=\frac{11}{12}

Step-by-step explanation:

Given fractional expression is \frac{1}{4}+\frac{2}{3}

To find the addition of given fractions :

Adding the given fractions we get

\frac{1}{4}+\frac{2}{3}

=\frac{1(3)+2(4)}{12} ( here taking 12 as LCM )

=\frac{3+8}{12}

=\frac{11}{12}

Therefore \frac{1}{4}+\frac{2}{3}=\frac{11}{12}

The addition of given fractions is \frac{11}{12}

3 0
4 years ago
Other questions:
  • Using your knowledge of exponential and logarithmic functions and properties, what is the intensity of a fire alarm that has a s
    9·1 answer
  • Leon drew ABC and DEF so that A = D
    5·1 answer
  • You buy 1 box of dog food and 2 cans of cat food for $25. Your friend buys 2 boxes of dog food and 1 can of cat food for $26.
    7·1 answer
  • Find the surface area of the pyramid.
    8·2 answers
  • Given 2x +8y=16, find the x- and y- intercepts
    10·1 answer
  • If you answer this you will get 100 points pls answer hurry it’s due in 20 mins
    13·2 answers
  • -<br> For the line described by y =<br> -2x + 8, the y-intercept is<br> and the slope is
    13·2 answers
  • 3 3/16 divided 3/8?
    14·1 answer
  • The sum of two numbers is 36. One number is 2 times as large as the other. What are the numbers?
    14·1 answer
  • The diagram shows a rectangle.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!