I’m pretty sure it’s in the telophase
The difference in concentration between solutions on either side of a cell membrane is a concentration gradient.
In the field of biology, a concentration gradient can be described as a difference in the concentration of molecules inside and outside of a cell. It is due to concentration gradient that molecules move into and out of a cell through the cell membrane.
Some molecules move from an area of higher concentration gradient to an area of lower concentration along the concentration gradient. Diffusion is an example of such a process.
On the other hand, some molecules move from an area of lower concentration to an area of higher concentration against the concentration gradient. Active transport is an example of such a process.
To learn more about concentration gradient, click here:
brainly.com/question/13814995
#SPJ4
Answer:
Explanation:
From the information given:
The cell potential on mars E = + 100 mV
By using Goldman's equation:
![E_m = \dfrac{RT}{zF}In \Big (\dfrac{P_K[K^+]_{out}+P_{Na}[Na^+]_{out}+P_{Cl}[Cl^-]_{out} }{P_K[K^+]_{in}+P_{Na}[Na^+]_{in}+ P_{Cl}[Cl^-]_{in}} \Big )](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7DIn%20%5CBig%20%28%5Cdfrac%7BP_K%5BK%5E%2B%5D_%7Bout%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bout%7D%2BP_%7BCl%7D%5BCl%5E-%5D_%7Bout%7D%20%7D%7BP_K%5BK%5E%2B%5D_%7Bin%7D%2BP_%7BNa%7D%5BNa%5E%2B%5D_%7Bin%7D%2B%20P_%7BCl%7D%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%20%20%20%5CBig%20%29)
Let's take a look at the impermeable cell with respect to two species;
and the two species be Na⁺ and Cl⁻
![E_m = \dfrac{RT}{zF} In \dfrac{[K^+]_{out}}{[K^+]_{in}}](https://tex.z-dn.net/?f=E_m%20%3D%20%5Cdfrac%7BRT%7D%7BzF%7D%20In%20%5Cdfrac%7B%5BK%5E%2B%5D_%7Bout%7D%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
where;
z = ionic charge on the species = + 1
F = faraday constant
∴
![100 \times 10^{-3} = \Big (\dfrac{8.314 \times 298}{1\times 96485} \Big) \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20%5CBig%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298%7D%7B1%5Ctimes%2096485%7D%20%5CBig%29%20%5Cmathtt%7BIn%7D%20%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![3.981= \mathtt{In} \Big ( \dfrac{4}{[K^+]_{in}} \Big)](https://tex.z-dn.net/?f=3.981%3D%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![exp ( 3.981) = \dfrac{4}{[K^+]_{in}} \\ \\ 53.57 = \dfrac{4}{[K^+]_{in}}](https://tex.z-dn.net/?f=exp%20%28%203.981%29%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D%20%5C%5C%20%5C%5C%20%2053.57%20%3D%20%5Cdfrac%7B4%7D%7B%5BK%5E%2B%5D_%7Bin%7D%7D)
![[K^+]_{in} = \dfrac{4}{53.57}](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B4%7D%7B53.57%7D)
![[K^+]_{in} = 0.0476](https://tex.z-dn.net/?f=%5BK%5E%2B%5D_%7Bin%7D%20%20%3D%200.0476)
For [Cl⁻]:
![100 \times 10^{-3} = -0.0257 \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%20-0.0257%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![-3.981 = \ \mathtt{In} \Big ( \dfrac{120}{[Cl^-]_{in}} \Big)](https://tex.z-dn.net/?f=-3.981%20%3D%20%20%5C%20%20%5Cmathtt%7BIn%7D%20%5CBig%20%28%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![0.01867 = \dfrac{120}{[Cl^-]_{in}}](https://tex.z-dn.net/?f=0.01867%20%3D%20%20%5Cdfrac%7B120%7D%7B%5BCl%5E-%5D_%7Bin%7D%7D)
![[Cl^-]_{in} = \dfrac{120}{0.01867}](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D%20%5Cdfrac%7B120%7D%7B0.01867%7D)
![[Cl^-]_{in} =6427.4](https://tex.z-dn.net/?f=%5BCl%5E-%5D_%7Bin%7D%20%3D6427.4)
For [Na⁺]:
![100 \times 10^{-3} = 0.0257 \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=100%20%5Ctimes%2010%5E%7B-3%7D%20%3D%200.0257%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![53.57= \Big ( \dfrac{145}{[Na^+]_{in}} \Big)](https://tex.z-dn.net/?f=53.57%3D%20%5CBig%20%28%20%5Cdfrac%7B145%7D%7B%5BNa%5E%2B%5D_%7Bin%7D%7D%20%20%20%5CBig%29)
![[Na^+]_{in}= 2.70](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D_%7Bin%7D%3D%202.70)
<span>There are two types of stimulus that travel within our body. The two types are chemical and electrical. Electrical stimulus is the type of stimulus that travels from the motor neuron to the skeletal muscle. Electrical muscle stimulation is the elicitation of muscle contraction using electric impulses.</span>
Answer:
C
Explanation:
Protozoa have been classified into three trophic categories: the photoautotrophs which harness the sun's radiant energy in the process of photosynthesis; the photoheterotrophs, which although phototrophic in energy requirements, are unable to use carbon dioxide for cell synthesis and must have organic carbon compounds