1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
2 years ago
5

Evaluate the interval (Calculus 2)

Mathematics
1 answer:
Darya [45]2 years ago
3 0

Answer:

2 \tan (6x)+2 \sec (6x)+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x

Multiply by the conjugate of 1 - sin(6x) :

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x

\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:

\implies \sin^2 (6x) + \cos^2 (6x)=1

\implies \cos^2 (6x)=1- \sin^2 (6x)

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

Expand:

\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:

\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x

\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int  \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}

\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}

Simplify:

\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}

\implies 2 \tan (6x)+2 \sec (6x)+\text{C}

Learn more about indefinite integration here:

brainly.com/question/27805589

brainly.com/question/28155016

You might be interested in
An employee working in a machine shop is exposed to three different sources which emit noises at 81 dB, 91 dB, and 88 dB. What i
leonid [27]
Hello,
Please, see the attached file.
Thanks.

5 0
3 years ago
Futhe Mathematics<br><img src="https://tex.z-dn.net/?f=%28Cos%20%7B%7D%5E%7B4%7Dt%20-Sin%20%7B%7D%5E%7B4%7Dt%20%29%20%20%5Cdiv%2
Nastasia [14]

Answer:

cos2t/cos²t

Step-by-step explanation:

Here the given trigonometric expression to us is ,

\longrightarrow \dfrac{cos^4t - sin^4t }{cos^2t }

We can write the numerator as ,

\longrightarrow \dfrac{ (cos^2t)^2-(sin^2t)^2}{cos^2t }

Recall the identity ,

\longrightarrow (a-b)(a+b)=a^2-b^2

Using this we have ,

\longrightarrow \dfrac{(cos^2t + sin^2t)(cos^2t-sin^2t)}{cos^2t}

Again , as we know that ,

\longrightarrow sin^2\phi + cos^2\phi = 1

Therefore we can rewrite it as ,

\longrightarrow \dfrac{1(cos^2t - sin^2t)}{cos^2t}

Again using the first identity mentioned above ,

\longrightarrow \underline{\underline{\dfrac{(cost + sint )(cost - sint)}{cos^2t}}}

Or else we can also write it using ,

\longrightarrow cos2\phi = cos^2\phi - sin^2\phi

Therefore ,

\longrightarrow \underline{\underline{\dfrac{cos2t}{cos^2t}}}

And we are done !

\rule{200}{4}

Additional info :-

<em>D</em><em>e</em><em>r</em><em>i</em><em>v</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>o</em><em>f</em><em> </em><em>c</em><em>o</em><em>s</em><em>²</em><em>x</em><em> </em><em>-</em><em> </em><em>s</em><em>i</em><em>n</em><em>²</em><em>x</em><em> </em><em>=</em><em> </em><em>c</em><em>o</em><em>s</em><em>2</em><em>x</em><em> </em><em>:</em><em>-</em>

We can rewrite cos 2x as ,

\longrightarrow cos(x + x )

As we know that ,

\longrightarrow cos(y + z )= cosy.cosz -  siny.sinz

So that ,

\longrightarrow cos(x+x) = cos(x).cos(x) - sin(x)sin(x)

On simplifying,

\longrightarrow cos(x+x) = cos^2x - sin^2x

Hence,

\longrightarrow\underline{\underline{cos (2x) = cos^2x - sin^2x }}

\rule{200}{4}

7 0
2 years ago
Write in ordinary form <br> 5x10 to the power 6 <br> Can someone help me please
lara [203]
It is just 5.0 and you move the decimal right six places
7 0
3 years ago
What is the product? Assume x &gt; 0 (sqrt 3x + sqrt 5) (sqrt 15x + 2 sqrt 30)
CaHeK987 [17]

Answer:

B hope it helps

Step-by-step explanation:

6 0
3 years ago
Mr. Stanton bought 121 feet of rope to repair a rope bridge. The ratio of the two pieces that he needs from the length he bought
shutvik [7]
The length of piece will be 44 and 77.
7 0
3 years ago
Other questions:
  • Please help !!!!!!!!
    10·2 answers
  • Marcus played 3 different activities this week after school. The time he spent playing is described below. Swam forof an hour Pl
    15·1 answer
  • Its a PEMDAS question folks i hope you can help
    11·2 answers
  • 4x<br> 5.<br> If 7:5 = (x + 2y): (x - y), find the value of<br> 5y
    10·1 answer
  • Please help ASAP this is due very soon and I need help.
    9·1 answer
  • Can anyone help me with this math question please I will give brainlist!!
    8·2 answers
  • (8c+8)–(c+3)<br> answer-
    14·2 answers
  • With the process<br>opt maths​
    9·1 answer
  • 34. The product of two algebraic
    15·1 answer
  • there are 3 liters of orange juice at a school party. 10 students want to drinkable of the orange juice, and they all want to ge
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!