Answer:
81 molecules
Explanation:
The reaction between C5H12 and O2 is a combustion reaction and is represented by the following equation;
C5H12 + 8O2 --> 5CO2 + 6H2O
The ratio of C5H12 to O2 from the above equation is 1 : 8.
Aplying the conditins of the question; 24 molecules each of C5H12 and O2 we have;
3C5H12 + 24O2 --> 15CO2 + 18H2O
This means we have 24 - 3 = 21 molecules of C5H12 that are unreacted.
Total molecules is given as;
3(C5H12) + 24(O2) + 15(CO2) + 18(H2O) + 21(Unreacted C5H12) = 81 molecules
Answer:
B.) An atom of arsenic has one more valence electron and more electron shells than an atom of silicon, so the conductivity decreases because the arsenic atom loses the electron.
Explanation:
Silicon is located in the 3rd row and 14th column in the periodic table. Arsenic is located in the 4th row and 15th column in the periodic table. This means that arsenic has one more valence electron than silicon. Since arsenic is located one row down from silicon, its valence electrons occupy higher energy orbitals.
Silicon maintains a crystal-like lattice structure. Each silicon atom is covalently connected to assume this shape. When silicon gains one extra electron from arsenic, it experiences n-type doping. This new electron is not tightly bound in the lattice structure. This allows it to move more freely and conduct more electricity. This can also be explained using band gaps. Silicon, which previously had an empty conduction band, now has one electron in this band. This lowers the band gap between the conduction and valence bands and increases conductivity.
An organic compound that contains a carbonyl group with a hydroxyl group attached to it is an example of a (d) carboxylic acid.