The standard deviation is 9.27. The typical heart rate for the data set varies from the mean by an average of 9.27 beats per minute.
<h3>How to determine the standard deviation of the data set?</h3>
The dataset is given as:
Heart Rate Frequency
60 1
65 3
70 4
75 12
80 8
85 15
90 9
95 5
100 3
Calculate the mean using
Mean = Sum/Count
So, we have
Mean = (60 * 1 + 65 * 3 + 70 * 4 + 75 * 12 + 80 * 8 + 85 * 15 + 90 * 9 + 95 * 5 + 100 * 3)/(1 + 3 + 4 + 12 + 8 + 15 + 9 + 5 + 3)
Evaluate
Mean = 82.25
The standard deviation is

So, we have:
SD = √[1 * (60 - 82.25)^2 + 3 * (65 - 82.25)^2 + 4 * (70 - 82.25)^2 + 12 * (75 - 82.25)^2 + 8 * (80 - 82.25)^2 + 15 * (85 - 82.25)^2 + 9 * (90 - 82.25)^2 + 5 * (95 - 82.25)^2 + 3 * (100 - 82.25)^2)]/[(1 + 3 + 4 + 12 + 8 + 15 + 9 + 5 + 3 - 1)]
This gives
SD = √85.9533898305
Evaluate
SD = 9.27
Hence. the standard deviation is 9.27. The typical heart rate for the data set varies from the mean by an average of 9.27 beats per minute.
Read more about standard deviation at:
brainly.com/question/4079902
#SPJ1
Answer:
the answer is B
Step-by-step explanation:
Answer: No. The two frames does not have the same ratio of white shells to orange shells.
Step-by-step explanation:
Ryan glued 9 white shells and 15 orange shells to the border of his frame. This will give us a fraction of:
9/15 = 3/5
The ratio is 3:5
Russell glued 8 white shells and 10 orange shells to the border of his frame. This will give us a fraction of:
= 8/10 = 4/5
The ratio will be 4:5.
Therefore, the two frames does not have the same ratio of white shells to orange shells.