Answer:
b. As the sample size â increases, the variance of decreases. â So, the distribution of becomes highly concentrated around.
Step-by-step explanation:
Let : Yi,.... Yn are = i.i.d are random variables. The probability density of the distribution varies along with the sample size. When the sample size changes, the probability density of
also changes.
The probability distribution may be defined as the statistical expression which defines the likelihood of any outcome for the discrete random variable and it can be opposed to the continuous random variable.
In the context, when the size of the sample of the distribution size increases, it causes a decrease in the variance and so the distribution becomes highly concentrated around.
Answer:
Contradiction
Step-by-step explanation:
Suppose that G has more than one cycle and let C be one of the cycles of G, if we remove one of the edges of C from G, then by our supposition the new graph G' would have a cycle. However, the number of edges of G' is equal to m-1=n-1 and G' has the same vertices of G, which means that n is the number of vertices of G. Therefore, the number of edges of G' is equal to the number of vertices of G' minus 1, which tells us that G' is a tree (it has no cycles), and so we get a contradiction.
Answer:
I believe the answer is b
Step-by-step explanation:
I might be wrong
Answer:
x= -2 is correct answer
Step-by-step explanation:
3(-2×-2)+13(-2)+14=0
3(4)+13(-2)+14=0
12+(-26)+14=0
12-26+14=0
12+14-26=0
26-26=0
0=0