The solution of the recurrence relation is ![a_n=3.2^n](https://tex.z-dn.net/?f=a_n%3D3.2%5En)
For given question,
We have been given a recurrence relation
for n ≥ 1
and an initial condition ![a_0=3](https://tex.z-dn.net/?f=a_0%3D3)
Let
= m²,
= m and
= 1
So from given recurrence relation we get an characteristic equation,
⇒ m² = 2m
⇒ m² - 2m = 0 .........( Subtract 2m from each side)
⇒ m(m - 2) = 0 .........(Factorize)
⇒ m = 0 or m - 2 = 0
⇒ m = 0 or m = 2
We know that the solution of the recurrence relation is then of the form
where
are the roots of the characteristic equation.
Let,
= 0 and
= 2
From above roots,
![\Rightarrow a_n=\alpha_1 {0}^n + \alpha_2 {2}^n\\\\\Rightarrow a_n=0+\alpha_2 {2}^n\\\\\Rightarrow a_n=\alpha_2 {2}^n](https://tex.z-dn.net/?f=%5CRightarrow%20a_n%3D%5Calpha_1%20%7B0%7D%5En%20%2B%20%5Calpha_2%20%7B2%7D%5En%5C%5C%5C%5C%5CRightarrow%20a_n%3D0%2B%5Calpha_2%20%7B2%7D%5En%5C%5C%5C%5C%5CRightarrow%20a_n%3D%5Calpha_2%20%7B2%7D%5En)
For n = 0,
![\Rightarrow a_0=\alpha_2 {2}^0\\\\\Rightarrow a_0=\alpha_2 \times 1\\\\\Rightarrow a_0=\alpha_2](https://tex.z-dn.net/?f=%5CRightarrow%20a_0%3D%5Calpha_2%20%7B2%7D%5E0%5C%5C%5C%5C%5CRightarrow%20a_0%3D%5Calpha_2%20%5Ctimes%201%5C%5C%5C%5C%5CRightarrow%20a_0%3D%5Calpha_2)
But ![a_0=3](https://tex.z-dn.net/?f=a_0%3D3)
This means ![\alpha_2=3](https://tex.z-dn.net/?f=%5Calpha_2%3D3)
so, the solution of the recurrence relation would be ![a_n=3.2^n](https://tex.z-dn.net/?f=a_n%3D3.2%5En)
Therefore, the solution of the recurrence relation is ![a_n=3.2^n](https://tex.z-dn.net/?f=a_n%3D3.2%5En)
Learn more about the recurrence relation here:
brainly.com/question/27618667
#SPJ4