Total Cost = 250 + 60x is the equation that models the given situation
<em><u>Solution:</u></em>
Given that, Linda's start up cost for her online jewelery store was $250
She has to pay an additional $60 per month to keep it running
To find: Equation that models this situation
From given,
Start up cost = $ 250
Let "x" be the number of months she keeps the store running
Additional pay per month = $ 60
Thus, the total cost Linda spend to keep the store running is given as:
Total Cost = Startup cost + (Additional pay per month)(number of months)

Thus the equation that models the given situation is found
Answer:
1) Brazil - 190,000,000
2) Egypt - 77,000,000
3) Australia - 20,000,000
4) Singapore - 4,400,000
5) Luxembourg - 470,000
Answer:
yes she will have enough, they will have 17 dollars left
Step-by-step explanation:
84 times 5 is 420 so she will have enough
Step-by-step explanation:
Simple interest formula

Compound interest formula

a.

Simple interest is $125
b
. 
Compound interest is $125
c. the result for both a and b are the same
d.

the simple interest is $375
e
. ![A = 5000 (1 + \frac{0.025}{1})^{1*3}] \\A=5000(1.025)^3 \\A=5000(1.077)\\A= 5385](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.025%7D%7B1%7D%29%5E%7B1%2A3%7D%5D%20%5C%5CA%3D5000%281.025%29%5E3%20%5C%5CA%3D5000%281.077%29%5C%5CA%3D%205385)
the compound interest is $385
f. the result compared, compound interest is $10 more than simple interest
g.

the simple interest is $600
h.
![A = 5000 (1 + \frac{0.02}{1})^{1*6}] \\A=5000(1.12)^6 \\A=5000(1.9738) \\A= 9869](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.02%7D%7B1%7D%29%5E%7B1%2A6%7D%5D%20%5C%5CA%3D5000%281.12%29%5E6%20%5C%5CA%3D5000%281.9738%29%20%5C%5CA%3D%209869)
the compound interest is $4869
i. the result from g and h, h is over 8 times bigger than g.
j. interest compound annually is not the same as simple interest, only for the case of a and b seeing that it is for 1 year. but for 2years and above there is difference as seen in c to h
Answer:
Yes, we can conclude that the population standard deviation of TV watching times for teenagers is less than 2.66
Step-by-step explanation:
H0 : σ² = 2.66²
H1 : σ² < 2.66²
X²c = (n - 1)*s² ÷ σ²
sample size, n = 40
Sample standard deviation, s = 1.9
X²c = ((40 - 1) * 1.9²) ÷ 2.66²
X²c = 140.79 ÷ 7.0756
X²c = 19.897
Using a confidence level of 95%
Degree of freedom, df = n - 1 ; df = 40 - 1 = 39
The critical value using the chi distribution table is 25.6954
Comparing the test statistic with the critical value :
19.897 < 25.6954
Test statistic < Critical value ; Reject the Null
Hence, we can conclude that the population standard deviation of TV watching times for teenagers is less than 2.66