Answer get 6 4 feet piece and you can get
and 8 3 feet pieces
Answer:
Two possible lengths for the legs A and B are:
B = 1cm
A = 14.97cm
Or:
B = 9cm
A = 12cm
Step-by-step explanation:
For a triangle rectangle, Pythagorean's theorem says that the sum of the squares of the cathetus is equal to the hypotenuse squared.
Then if the two legs of the triangle are A and B, and the hypotenuse is H, we have:
A^2 + B^2 = H^2
If we know that H = 15cm, then:
A^2 + B^2 = (15cm)^2
Now, let's isolate one of the legs:
A = √( (15cm)^2 - B^2)
Now we can just input different values of B there, and then solve the value for the other leg.
Then if we have:
B = 1cm
A = √( (15cm)^2 - (1cm)^2) = 14.97
Then we could have:
B = 1cm
A = 14.97cm
Now let's try with another value of B:
if B = 9cm, then:
A = √( (15cm)^2 - (9cm)^2) = 12 cm
Then we could have:
B = 9cm
A = 12cm
So we just found two possible lengths for the two legs of the triangle.
Answer:
y = −32
Step-by-step explanation:
Isolate the variable by dividing each side by factors that don't contain the variable.
Answer:
Step-by-step explanation:
1. Swap sides
Swap sides:
2. Isolate the y
Multiply to both sides by 18:
Group like terms:
Simplify the fraction:
Multiply the fractions:
Simplify the arithmetic:
---------------------------
Why learn this:
- Linear equations cannot tell you the future, but they can give you a good idea of what to expect so you can plan ahead. How long will it take you to fill your swimming pool? How much money will you earn during summer break? What are the quantities you need for your favorite recipe to make enough for all your friends?
- Linear equations explain some of the relationships between what we know and what we want to know and can help us solve a wide range of problems we might encounter in our everyday lives.
---------------------
Terms and topics
- Linear equations with one unknown
The main application of linear equations is solving problems in which an unknown variable, usually (but not always) x, is dependent on a known constant.
We solve linear equations by isolating the unknown variable on one side of the equation and simplifying the rest of the equation. When simplifying, anything that is done to one side of the equation must also be done to the other.
An equation of:
in which and are the constants and is the unknown variable, is a typical linear equation with one unknown. To solve for in this example, we would first isolate it by subtracting from both sides of the equation. We would then divide both sides of the equation by resulting in an answer of: