"They have different slopes but the same y-intercept, so they have one solution" is the statement which best describes the two lines.
Answer: Option D
<u>Step-by-step explanation:</u>
Given equations:


As we know that the slope intercept form of a line is
y = m x + c
So, from equation 1 and equation 2 we can see that


So, from the above expressions, we can say that both lines have different slopes but have same y – intercept with one common solution when x = 0.
Answer:
<
Step-by-step explanation:
Inequality symbols:
< less than
> greater than
= equal to
≤ less than or equal to
≥ greater than or equal to
In this case, it is known that -4 is less than 5, or:
-4 < 5.
~
Answer:
y = x + 1
Step-by-step explanation:
The gradient of a line can be defined by the equation:
m (gradient) = (y1 – y2 ) ÷ (x1 – x2) ----> "1" and "2" should be in subscript
For (-7,-6) we use x2 and y2 (because this point can be anywhere along a line):
x2 = -7, y2 = -6
Plug these values into the formula above:
m = (y-(-6)) ÷ (x-(-7))
m = (y+6) ÷ (x+7)
At this stage, the equation can't be solved as there are two unknowns. Therefore, the gradient must be found another way. Two lines are parallel if they have the same gradient - in their y=mx+c equations, m will be equal.
x - y=7 is the line alluded to in the question. Rearranging this equation into the line equation format gives:
y = x-7 ---> The gradient (coefficient of x) is 1.
Therefore, the gradient of the other parallel line must also be 1.
This can be substituted into the previous equation to give:
1 = (y+6)÷(x+7)
x+7 = y+6
x+1 = y
Therefore, the answer is y=x+1