Answer:
The correct answer is 10.939 mol ≅ 10.94 mol
Explanation:
According to Avogadro's gases law, the number of moles of an ideal gas (n) at constant pressure and temperature, is directly proportional to the volume (V).
For the initial gas (1), we have:
n₁= 1.59 mol
V₁= 641 mL= 0.641 L
For the final gas (2), we have:
V₂: 4.41 L
The relation between 1 and 2 is given by:
n₁/V₁ = n₂/V₂
We calculate n₂ as follows:
n₂= (n₁/V₁) x V₂ = (1.59 mol/0.641 L) x 4.41 L = 10.939 mol ≅ 10.94 mol
The question above is simply asking us to convert the value from calories into kilojoules. Therefore, we need some factor to multiply to be able to convert it to such units. For calories to kJ, the factor would be 4.184.
2700 cal ( 4.184 kJ/cal) = 11296.8 kJ
Answer:
The Kelvin temperature scale reflects the relationship between temperature and average kinetic energy.
Explanation:
The Kelvin temperature of a substance is directly equal to the average kinetic energy of the particles of a substance.
Answer: D
Explanation:
A reducing agent is a species that reduces other compounds, and is thereby oxidized. The whole compound becomes the reducing agent. In other words, of a compound is oxidized, then they are the reducing agent. On the other hand, if the compound is reduced, it is an ozidizing agent.
Since we have established that a reducing agent is the compound being oxidized, we know that A is not our answer. An oxidized compound is losing electrons. Choice A states exactly this.
For B, this is true as we have established this already.
C is also correct. Since a reducing agent loses electrons, it becomes more positive. This makes the oxidation number increase.
D would be our correct answer. It is actually a good oxidizing agent is a metal in a high oxidation state, such as Mn⁷⁺.
Answer:
Option-B (2-methylpropene)
Explanation:
The reaction scheme is attached below,
In first step the alkene acts a nucleophile and adds H⁺ across double bond yielding a stable tertiary carbocation.
In the second step the oxygen atom of methanol acts as nucleophile and attacks the positive charge carrying carbon atom resulting in the formation of t-butyl methyl ether.