According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
<h3>What is the behavior of a functions close to one its vertical asymptotes?</h3>
Herein we know that the <em>rational</em> function is q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15), there are <em>vertical</em> asymptotes for values of x such that the denominator becomes zero. First, we factor both numerator and denominator of the equation to see <em>evitable</em> and <em>non-evitable</em> discontinuities:
q(x) = (x² - 6 · x + 9) / (x² - 8 · x + 15)
q(x) = [(x - 3)²] / [(x - 3) · (x - 5)]
q(x) = (x - 3) / (x - 5)
There are one <em>evitable</em> discontinuity and one <em>non-evitable</em> discontinuity. According to the theory of <em>rational</em> functions, there are no <em>vertical</em> asymptotes at the <em>rational</em> function evaluated at x = 3.
To learn more on rational functions: brainly.com/question/27914791
#SPJ1