The height of the skyscraper to the nearest tenth is 234. 95 meters.
<h3>How to determine the height</h3>
From the information given, we have:
- angle of elevation = 32°
- length of the base, adjacent side = 376 meters
- height of the skyscraper, opposite side = x meters
To determine the height of the elevator, let's use the tangent identity
We have that;
tan θ = opposite/ adjacent
The value of the opposite side is 'x' which is the height of the skyscraper and the value of the adjacent side is 376 meters which is the length of the base of the skyscraper
Now, substitute the values, we have;
tan 32 = x/ 376
cross multiply
x = tan 32 × 376
x = 0. 6249 × 376
x = 234. 95 meters
We know that the 'x' represents the opposite side and thus the height of the skyscraper
Thus, the height of the skyscraper to the nearest tenth is 234. 95 meters.
Learn more about angle of elevation here:
brainly.com/question/19594654
#SPJ1
1200,000(1+.1)=(the answer) sorry I don't have a calculator with me.
Answer:
See below
Step-by-step explanation:
![9.( {m}^{3} {n}^{5} )^{ \frac{1}{4} } \\ = m^{\frac{3}{4}}n^{\frac{5}{4}}\\ \\ 10. \sqrt[5]{ \sqrt[4]{x} } \\ = \sqrt[5]{ {x}^{ \frac{1}{4} } } \\ = {( {x}^{ \frac{1}{4} } )}^{ \frac{1}{5} } \\ = {x}^{ \frac{1}{4} \times \frac{1}{5} } \\ = {x}^{ \frac{1}{20} } \\ \\ \sqrt[5]{ \sqrt[3]{ {a}^{2} } } \\ = \sqrt[5]{ {a}^{ \frac{2}{3} } } \\ = {( {a}^{ \frac{2}{3} } )}^{ \frac{1}{5} } \\ = {a}^{ \frac{2}{3} \times \frac{1}{5} } \\ = {a}^{ \frac{2}{15} }](https://tex.z-dn.net/?f=9.%28%20%7Bm%7D%5E%7B3%7D%20%20%7Bn%7D%5E%7B5%7D%20%29%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%20%20%5C%5C%20%20%20%3D%20%20m%5E%7B%5Cfrac%7B3%7D%7B4%7D%7Dn%5E%7B%5Cfrac%7B5%7D%7B4%7D%7D%5C%5C%20%20%5C%5C%2010.%20%5Csqrt%5B5%5D%7B%20%5Csqrt%5B4%5D%7Bx%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B5%5D%7B%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B%28%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%20%3D%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B4%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B20%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%5Csqrt%5B5%5D%7B%20%5Csqrt%5B3%5D%7B%20%7Ba%7D%5E%7B2%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B5%5D%7B%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B%28%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%20%3D%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7Ba%7D%5E%7B%20%5Cfrac%7B2%7D%7B15%7D%20%7D%20%20)
Answer:
-0.875
Step-by-step explanation:
5 1/4 = 5.25
5.25/ -6 = -0.875
Answer:
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x + C.</em></u>
Step-by-step explanation:
<u><em>First step we aplicate distributive property to the function.</em></u>
<u><em>5*(x+a)*(x+b)= 5*[
+x*b+a*x+a*b]</em></u>
<u><em>5*[
+x*(b+a)+a*b]= f(x), where a, b are constant and a≠b</em></u>
<u><em>integrating we find ⇒∫f(x)*dx= F(x) + C, where C= integration´s constant</em></u>
<u><em>∫^5*[
+x*(a+b)+a*b]*dx, apply integral´s property</em></u>
<u><em>5*[∫
dx+∫(a*b)*x*dx + ∫a*b*dx], resolving the integrals </em></u>
<u><em>5*[
+ (a*b)*
+ a*b*x</em></u>
<u><em>Finally we can write the function F(x)</em></u>
<u><em>F(x)= 5*[
+ (a*b)*
+ a*b*x ]+ C.</em></u>