We have by the intermediate value theorem that if a continuous function takes values both above and below zero at 2 points, there is a zero of the function in-between. We have that polynomials are continues. Let's calculate f(-6) and f(-5). f(-6)=-36 while f(-5)=-1. Thus, we cannot conclude that there is a root between them.
F(-2)=8, f(-1)=-1, so there is a flip; a zero must exist between them.
F(1)=-1, f(2)=20, so again there is a change of signs.
f(-5)=-1, f(-4)=14 so there is a root still.
We have that the only choice that does not have a root between the integers is choice a.
Answer: S^64
Step-by-step explanation:
S^4 - 4.4.4 = 64
The question is incomplete. Here is the complete question.
Semicircles and quarter circles are types of arc lengths. Recall that an arc is simply part of a circle. we learned about the degree measure of an ac, but they also have physical lengths.
a) Determine the arc length to the nearest tenth of an inch.
b) Explain why the following proportion would solve for the length of AC below: 
c) Solve the proportion in (b) to find the length of AC to the nearest tenth of an inch.
Note: The image in the attachment shows the arc to solve this question.
Answer: a) 9.4 in
c) x = 13.6 in
Step-by-step explanation:
a)
, where:
r is the radius of the circumference
mAB is the angle of the arc
arc length = 
arc length = 
arc length = 9.4
The arc lenght for the image is 9.4 inches.
b) An <u>arc</u> <u>length</u> is a fraction of the circumference of a circle. To determine the arc length, the ratio of the length of an arc to the circumference is equal to the ratio of the measure of the arc to 360°. So, suppose the arc length is x, for the arc in (b):


c) Resolving (b):
x = 
x = 13.6
The arc length for the image is 13.6 inches.
Answer:
6 in 2.
Step-by-step explanation:
Area = √s(s-a)(s-b)(s-c)
= √6×(6 - 4)×(6 - 3)×(6 - 5)
= 6 inches 2.
I think the mean of variable a is 4