It would be:
Tens | Ones
3 + 4
2 + 14
1 + 24
0 + 34
Hope this helped! c:
Answer:
slope= -3
y-intercept= 6
Step-by-step explanation:
1. Approach
To solve this problem, one needs the slope and the y-intercept. First, one will solve for the slope, using the given points, then input it into the equation of a line in slope-intercept form. The one can solve for the y-intercept.
2.Solve for the slope
The formula to find the slope of a line is;

Where (m) is the variable used to represent the slope.
Use the first two given points, and solve;
(1, 3), (2, 0)
Substitute in,

Simplify;

3. Put equation into slope-intercept form
The equation of a line in slope-intercept form is;

Where (m) is the slope, and (b) is the y-intercept.
Since one solved for the slope, substitute that in, then substitute in another point, and solve for the parameter (b).

Substitute in point (3, -3)

Answer:
r = √13
Step-by-step explanation:
Starting with x^2+y^2+6x-2y+3, group like terms, first x terms and then y terms: x^2 + 6x + y^2 -2y = 3. Please note that there has to be an " = " sign in this equation, and that I have taken the liberty of replacing " +3" with " = 3 ."
We need to "complete the square" of x^2 + 6x. I'll just jump in and do it: Take half of the coefficient of the x term and square it; add, and then subtract, this square from x^2 + 6x: x^2 + 6x + 3^2 - 3^2. Then do the same for y^2 - 2y: y^2 - 2y + 1^2 - 1^2.
Now re-write the perfect square x^2 + 6x + 9 by (x + 3)^2. Then we have x^2 + 6x + 9 - 9; also y^2 - 1y + 1 - 1. Making these replacements:
(x + 3)^2 - 9 + (y - 1)^2 -1 = 3. Move the constants -9 and -1 to the other side of the equation: (x + 3)^2 + (y - 1)^2 = 3 + 9 + 1 = 13
Then the original equation now looks like (x + 3)^2 + (y - 1)^2 = 13, and this 13 is the square of the radius, r: r^2 = 13, so that the radius is r = √13.
Answer:
3.5
Step-by-step explanation:
If you divide x from y on each row, you will always get 3.5
Answer:
-56/9
Step-by-step explanation:
By Vieta's formulas,
$r + s = -\frac{4}{3}$ and $rs = \frac{12}{3} = 4.$ Squaring the equation $r + s = -\frac{4}{3},$ we get
$r^2 + 2rs + s^2 = \frac{16}{9}.$ Therefore,
$r^2 + s^2 = \frac{16}{9} - 2rs = \frac{16}{9} - 2 \cdot 4 = -\frac{56}{9}}$