The matrix for the linear transformation for which rotates every vector in r2 is
.
In this question,
The angle is -π/3 = -60°
Clockwise rotations are denoted by negative numbers.
Matrix for counter-clockwise direction for an angle α is
![\left[\begin{array}{cc}cos\alpha &-sin\alpha \\-sin\alpha &cos\alpha \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcos%5Calpha%20%26-sin%5Calpha%20%5C%5C-sin%5Calpha%20%26cos%5Calpha%20%5Cend%7Barray%7D%5Cright%5D)
Then, matrix for clockwise direction for an angle α
Put α = -α in the above matrix,
⇒ ![\left[\begin{array}{cc}cos(-\alpha) &-sin(-\alpha) \\-sin(-\alpha) &cos(-\alpha) \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcos%28-%5Calpha%29%20%26-sin%28-%5Calpha%29%20%5C%5C-sin%28-%5Calpha%29%20%26cos%28-%5Calpha%29%20%5Cend%7Barray%7D%5Cright%5D)
⇒ ![\left[\begin{array}{cc}cos\alpha &sin\alpha \\sin\alpha &cos\alpha \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcos%5Calpha%20%26sin%5Calpha%20%5C%5Csin%5Calpha%20%26cos%5Calpha%20%5Cend%7Barray%7D%5Cright%5D)
Now substitute α = 60°
Then matrix becomes,
⇒ ![\left[\begin{array}{cc}cos60 &sin60 \\sin60 &cos60 \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcos60%20%26sin60%20%5C%5Csin60%20%26cos60%20%5Cend%7Barray%7D%5Cright%5D)
⇒ ![\left[\begin{array}{cc}\frac{1}{2} &\frac{\sqrt{3} }{2} \\ \frac{\sqrt{3} }{2} &\frac{1}{2} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B1%7D%7B2%7D%20%20%26%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20%5C%5C%20%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D%20%26%5Cfrac%7B1%7D%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D)
Hence we can conclude that the matrix for the linear transformation for which rotates every vector in r2 is
.
Learn more about matrix for linear transformation here
brainly.com/question/12486975
#SPJ4