1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
1 year ago
13

Mrs. gomes found that 40% of students at her high school take chemistry. she randomly surveys 12 students. what is the probabili

ty that exactly 4 students have taken chemistry? round the answer to the nearest thousandth. p (k successes) = subscript n baseline c subscript k baseline p superscript k baseline (1 minus p) superscript n minus k. subscript n baseline c subscript k baseline = startfraction n factorial over (n minus k) factorial times k factorial endfraction
Mathematics
1 answer:
andrew-mc [135]1 year ago
5 0

Answer:

0.213

Step-by-step explanation:

→ Convert into binomial information

x ~ B ( 12 , 0.4 )

→ Write down probability required

p ( x = 4 )

→ Evaluate

0.2128

You might be interested in
What is -10 + -10<br><br><br><br><br> I’ll give brainliest
mars1129 [50]

Step-by-step explanation:

-10 + ( -10)

= -10 - 10

= - 20

Hope it will help .

3 0
2 years ago
Three assembly lines are used to produce a certain component for an airliner. To examine the production rate, a random
Katyanochek1 [597]

Answer:

a) Null hypothesis: \mu_A =\mu_B =\mu C

Alternative hypothesis: \mu_i \neq \mu_j, i,j=A,B,C

SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2 =20.5  

SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 =12.333  

SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2 =8.16667  

And we have this property  

SST=SS_{between}+SS_{within}  

The degrees of freedom for the numerator on this case is given by df_{num}=df_{within}=k-1=3-1=2 where k =3 represent the number of groups.

The degrees of freedom for the denominator on this case is given by df_{den}=df_{between}=N-K=3*6-3=15.

And the total degrees of freedom would be df=N-1=3*6 -1 =15

The mean squares between groups are given by:

MS_{between}= \frac{SS_{between}}{k-1}= \frac{12.333}{2}=6.166

And the mean squares within are:

MS_{within}= \frac{SS_{within}}{N-k}= \frac{8.1667}{15}=0.544

And the F statistic is given by:

F = \frac{MS_{betw}}{MS_{with}}= \frac{6.166}{0.544}= 11.326

And the p value is given by:

p_v= P(F_{2,15} >11.326) = 0.00105

So then since the p value is lower then the significance level we have enough evidence to reject the null hypothesis and we conclude that we have at least on mean different between the 3 groups.

b) (\bar X_B -\bar X_C) \pm t_{\alpha/2} \sqrt{\frac{s^2_B}{n_B} +\frac{s^2_C}{n_C}}

The degrees of freedom are given by:

df = n_B +n_C -2= 6+6-2=10

The confidence level is 99% so then \alpha=1-0.99=0.01 and \alpha/2 =0.005 and the critical value would be: t_{\alpha/2}=3.169

The confidence interval would be given by:

(43.333 -41.5) - 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}= 0.321

(43.333 -41.5) + 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}=3.345

Step-by-step explanation:

Previous concepts

Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".  

The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"

Part a  

Null hypothesis: \mu_A =\mu_B =\mu C

Alternative hypothesis: \mu_i \neq \mu_j, i,j=A,B,C

If we assume that we have 3 groups and on each group from j=1,\dots,6 we have 6 individuals on each group we can define the following formulas of variation:  

SS_{total}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x)^2 =20.5  

SS_{between}=SS_{model}=\sum_{j=1}^p n_j (\bar x_{j}-\bar x)^2 =12.333  

SS_{within}=SS_{error}=\sum_{j=1}^p \sum_{i=1}^{n_j} (x_{ij}-\bar x_j)^2 =8.16667  

And we have this property  

SST=SS_{between}+SS_{within}  

The degrees of freedom for the numerator on this case is given by df_{num}=df_{within}=k-1=3-1=2 where k =3 represent the number of groups.

The degrees of freedom for the denominator on this case is given by df_{den}=df_{between}=N-K=3*6-3=15.

And the total degrees of freedom would be df=N-1=3*6 -1 =15

The mean squares between groups are given by:

MS_{between}= \frac{SS_{between}}{k-1}= \frac{12.333}{2}=6.166

And the mean squares within are:

MS_{within}= \frac{SS_{within}}{N-k}= \frac{8.1667}{15}=0.544

And the F statistic is given by:

F = \frac{MS_{betw}}{MS_{with}}= \frac{6.166}{0.544}= 11.326

And the p value is given by:

p_v= P(F_{2,15} >11.326) = 0.00105

So then since the p value is lower then the significance level we have enough evidence to reject the null hypothesis and we conclude that we have at least on mean different between the 3 groups.

Part b

For this case the confidence interval for the difference woud be given by:

(\bar X_B -\bar X_C) \pm t_{\alpha/2} \sqrt{\frac{s^2_B}{n_B} +\frac{s^2_C}{n_C}}

The degrees of freedom are given by:

df = n_B +n_C -2= 6+6-2=10

The confidence level is 99% so then \alpha=1-0.99=0.01 and \alpha/2 =0.005 and the critical value would be: t_{\alpha/2}=3.169

The confidence interval would be given by:

(43.333 -41.5) - 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}= 0.321

(43.333 -41.5) + 3.169 \sqrt{\frac{0.6667}{6} +\frac{0.7}{6}}=3.345

7 0
3 years ago
At 2:00 PM a car's speedometer reads 30 mi/h. At 2:10 PM it reads 50 mi/h. Show that at some time between 2:00 and 2:10 the acce
Daniel [21]

Answer: If we define 2:00pm as our 0 in time; then:

at t= 0. the velocity is 30 mi/h.

then at t = 10m (or 1/6 hours) the velocity is 50mi/h

Then, if we think in the "mean acceleration" as the slope between the two velocities, we can find the slope as:

a= (y2 - y1)/(x2 - x1) = (50 mi/h - 30 mi/h)/(1/6h - 0h) = 20*6mi/(h*h) = 120mi/h^{2}

Now, this is the slope of the mean acceleration between t= 0h and t = 1/6h, then we can use the mean value theorem; who says that if F is a differentiable function on the interval (a,b), then exist at least one point c between a and b where F'(c) = (F(b) - F(a))/(b - a)

So if v is differentiable, then there is a time T between 0h and 1/6h where v(T) = 120mi/h^{2}

5 0
3 years ago
Work out the size of angle a
satela [25.4K]

Answer:thre

Step-by-step explanation:

8 0
2 years ago
(m +n + 3) + (m +n + 4)
S_A_V [24]

2m+2n+7 is the correct answer

8 0
2 years ago
Read 2 more answers
Other questions:
  • Solve for this equation x/-6 (x over negative 6) = 11
    13·1 answer
  • The graph below has the same shape. What is the equation of the blue graph????????
    9·1 answer
  • If 5.7 moles of zinc metal react with 8.9 moles of silver nitrate, how many moles of silver metal can be formed, and how many mo
    12·1 answer
  • How do you solve. Surface. Areas
    5·2 answers
  • Step by step is greatly appreciated
    12·1 answer
  • 2E. Point B is halfway between A and C. The distance from C to D is the same as the distance from D to E, which is the same as t
    15·1 answer
  • the ratio of students to laptops in a school is 3:2 if there are 1,200 students, how many laptops are there?
    9·2 answers
  • Find the size of angle a
    13·1 answer
  • Please help explain this to me <br> | k/7 | + 8=9
    11·2 answers
  • Help please and thankssssss.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!