Answer:
Solution given:
South distance :base[b]=80milea
East distance :perpendicular [p]=35miles
Now
<S=?
we have


=24°
24° bearing should be taken from south airport to East airport.
Add the equations in order to solve for the first variable. PLug this value into the other equations in order to solve for the remaining variables.
The answer is:
(2, -3)
Answer:
Y greater than or equal to 6
Step-by-step explanation:
I can't do the sign so I just said it
Combine like terms
Answer:
15 I just stared so I am bad but I think I am correct
Distance of each track are:
D₁ = 428.5 yd
D₂ = 436.35 yd
D₃ = 444.20 yd
D₄ = 452.05 yd
D₅ = 459.91 yd
D₆ = 467.76 yd
D₇ = 475.61 yd
D₈ = 483.47 yd
<u>Explanation:</u>
Given:
Track is divided into 8 lanes.
The length around each track is the two lengths of the rectangle plus the two lengths of the semi-circle with varying diameters.
Thus,

Starting from the innermost edge with a diameter of 60yd.
Each lane is 10/8 = 1.25yd
So, the diameter increases by 2(1.25) = 2.5 yd each lane going outward.
So, the distances are:
D₁ = 240 + π (60) → 428.5yd
D₂ = 240 + π(60 + 2.5) → 436.35 yd
D₃ = 240 + π(60 + 5) → 444.20 yd
D₄ = 240 + π(60 + 7.5) → 452.05 yd
D₅ = 240 + π(60 + 10) → 459.91 yd
D₆ = 24 + π(60 + 12.5) → 467.76 yd
D₇ = 240 + π(60 + 15) → 475.61 yd
D₈ = 240 + π(60 + 17.5) → 483.47 yd