Answer:
the common ratio is either 2 or -2.
the sum of the first 7 terms is then either 765 or 255
Step-by-step explanation:
a geometric sequence or series of progression (these are the most common names for the same thing) means that every new term of the sequence is created by multiplying the previous term by a constant factor which is called the common ratio.
so,
a1
a2 = a1×f
a3 = a2×f = a1×f²
a4 = a3×f = a1×f³
the problem description here tells us
a3 = 4×a1
and from above we know a3 = a1×f².
so, f² = 4
and therefore the common ratio = f = 2 or -2 (we need to keep that in mind).
again, the problem description tells us
a2 + a4 = 30
a1×f + a1×f³ = 30
for f = 2
a1×2 + a1×2³ = 30
2a1 + 8a1 = 30
10a1 = 30
a1 = 3
for f = -2
a1×-2 + a1×(-2)³ = 30
-10a1 = 30
a1 = -3
the sum of the first n terms of a geometric sequence is
sn = a1×(1 - f^(n+1))/(1-f) for f <>1
so, for f = 2
s7 = 3×(1 - 2⁸)/(1-2) = 3×-255/-1 = 3×255 = 765
for f = -2
s7 = -3×(1 - (-2)⁸)/(1 - -2) = -3×(1-256)/3 = -3×-255/3 =
= -1×-255 = 255
The answer is A. 5/12
Hope it helped!
Answer:
RS 14400
Step-by-step explanation:
Given the following :
Principal sum = RS 40000
Rate = 2 paisa per 2 rupee per month
Interest at the end of 3 years
1 rupee = 100 paisa
2 Paisa per 2 rupee per month :
2/200 per month = 1 / 100 per month,
Hence rate = 0.01 = 1% monthly
Annual rate = 1% × 12 = 12 % = 0.12
Simple interest :
Principal × rate × time
40000 × 0.12 × 3
40000 × 0.36
= RS 14,400
Answer:
55.8
Step-by-step explanation: