Answer:
Step-by-step explanation:
8/3=3(c+5/3)
multiply both sides by 3
8=9(c+5/3)
divide both sides by 9
8/9=c+5/3
subtract 5/3 from both sides
c=8/9-5/3
change 5/3 to 15/9
c=8/9-15/9
c=-7/9
Answer:
titutex=cos\alp,\alp∈[0:;π]
\displaystyle Then\; |x+\sqrt{1-x^2}|=\sqrt{2}(2x^2-1)\Leftright |cos\alp +sin\alp |=\sqrt{2}(2cos^2\alp -1)Then∣x+
1−x
2
∣=
2
(2x
2
−1)\Leftright∣cos\alp+sin\alp∣=
2
(2cos
2
\alp−1)
\displaystyle |\N {\sqrt{2}}cos(\alp-\frac{\pi}{4})|=\N {\sqrt{2}}cos(2\alp )\Right \alp\in[0\: ;\: \frac{\pi}{4}]\cup [\frac{3\pi}{4}\: ;\: \pi]∣N
2
cos(\alp−
4
π
)∣=N
2
cos(2\alp)\Right\alp∈[0;
4
π
]∪[
4
3π
;π]
1) \displaystyle \alp \in [0\: ;\: \frac{\pi}{4}]\alp∈[0;
4
π
]
\displaystyle cos(\alp -\frac{\pi}{4})=cos(2\alp )\dotscos(\alp−
4
π
)=cos(2\alp)…
2. \displaystyle \alp\in [\frac{3\pi}{4}\: ;\: \pi]\alp∈[
4
3π
;π]
\displaystyle -cos(\alp -\frac{\pi}{4})=cos(2\alp )\dots−cos(\alp−
4
π
)=cos(2\alp)…
1
Top
Display
Answer: (x+8)(x+2) = x^2 + 10x + 16
C = 2πr
r = radius
c = circumference = 18
Plug in the corresponding numbers with variables.
18 = 2πr
Isolate the r. Divide 2 and π from both sides
(18)/2π = (2πr)/2π
9/π = r
C/π = r is your formula to finding r.
~