So if 18 + x =43, then what you need to do is
18 + x =43
-18 -18
——————
x = 25
because whatever you do to one side, you need to do to the other
Yes a cube has eight vertices
The answer to this question is
![\frac{123}{500}](https://tex.z-dn.net/?f=%20%5Cfrac%7B123%7D%7B500%7D%20)
. Hope this helps.
Answer: 74.25 Php, 4.45kg, 182 Php, 30 People, and 315 Php
Step-by-step explanation:
1. 200-125.75= 74.25 Php
2. 1.5+1.7+1.25=4.45kg
3. 45.50*4 = 182 Php
4. 45/1.5 = 30 People
5. 35.00*9 = 315 Php
Answer:
1. ∠ABD = 20°.
2. Arc AB = 140°.
3. Arc AD = 40°.
Step-by-step explanation:
Given information: ∠ADB = 70°. BD is diameter.
According to Central angle theorem, the central angle from two chosen points A and B on the circle is always twice the inscribed angle from those two points.
By Central angle theorem,
![\angle DAB=90^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20DAB%3D90%5E%7B%5Ccirc%7D)
Using angle sum of property in triangle ADB we get,
![\angle ADB+\angle DAB+\angle ABD=180^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20ADB%2B%5Cangle%20DAB%2B%5Cangle%20%20ABD%3D180%5E%7B%5Ccirc%7D)
![70^{\circ}+90^{\circ}+\angle ABD=180^{\circ}](https://tex.z-dn.net/?f=70%5E%7B%5Ccirc%7D%2B90%5E%7B%5Ccirc%7D%2B%5Cangle%20%20ABD%3D180%5E%7B%5Ccirc%7D)
.
Draw a line segment AO.
In triangle AOD, AO=OD, so
![\angle ODB=\angle OAD=70^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20ODB%3D%5Cangle%20OAD%3D70%5E%7B%5Ccirc%7D)
Using angle sum property in triangle AOD,
![\angle AOD+\angle ODA+\angle OAD=180^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20AOD%2B%5Cangle%20ODA%2B%5Cangle%20%20OAD%3D180%5E%7B%5Ccirc%7D)
![\angle AOD+70^{\circ}+70^{\circ}=180^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20AOD%2B70%5E%7B%5Ccirc%7D%2B70%5E%7B%5Ccirc%7D%3D180%5E%7B%5Ccirc%7D)
![\angle AOD=40^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20AOD%3D40%5E%7B%5Ccirc%7D)
Therefore length of arc AD is 40°.
The angle AOD and AOB are supplementary angles.
![\angle AOD+\angle AOB=180^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20AOD%2B%5Cangle%20AOB%3D180%5E%7B%5Ccirc%7D)
![40^{\circ}+\angle AOB=180^{\circ}](https://tex.z-dn.net/?f=40%5E%7B%5Ccirc%7D%2B%5Cangle%20AOB%3D180%5E%7B%5Ccirc%7D)
![\angle AOB=140^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20AOB%3D140%5E%7B%5Ccirc%7D)
Therefore length of arc AB is 140°.