sin(<em>θ</em>) + cos(<em>θ</em>) = 1
Divide both sides by √2:
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = 1/√2
We do this because sin(<em>x</em>) = cos(<em>x</em>) = 1/√2 for <em>x</em> = <em>π</em>/4, and this lets us condense the left side using either of the following angle sum identities:
sin(<em>x</em> + <em>y</em>) = sin(<em>x</em>) cos(<em>y</em>) + cos(<em>x</em>) sin(<em>y</em>)
cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)
Depending on which identity you choose, we get either
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = sin(<em>θ</em> + <em>π</em>/4)
or
1/√2 sin(<em>θ</em>) + 1/√2 cos(<em>θ</em>) = cos(<em>θ</em> - <em>π</em>/4)
Let's stick with the first equation, so that
sin(<em>θ</em> + <em>π</em>/4) = 1/√2
<em>θ</em> + <em>π</em>/4 = <em>π</em>/4 + 2<em>nπ</em> <u>or</u> <em>θ</em> + <em>π</em>/4 = 3<em>π</em>/4 + 2<em>nπ</em>
(where <em>n</em> is any integer)
<em>θ</em> = 2<em>nπ</em> <u>or</u> <em>θ</em> = <em>π</em>/2 + 2<em>nπ</em>
<em />
We get only one solution from the second solution set in the interval 0 < <em>θ</em> < 2<em>π</em> when <em>n</em> = 0, which gives <em>θ</em> = <em>π</em>/2.
(2n +1) + (2n + 3) + (2n + 5) = 51
6n + 9 = 51
6n = 42
n = 7
numbers are 15 17 and 19
To find the volume of a triangular pyramid, the formula is:
So we start by finding the area of the base, which is in the shape of a right triangle in this case.
The area of a right triangle is equal to 1/2 x base x height.
We use this area to find the volume.
The volume of the triangular pyramid is 30 cubic feet.
The area of the given square pyramid is:
total area = 1,100 inches squared.
<h3 /><h3>
How to get the area of the pyramid?</h3>
On the second image, we can see that the pyramid is conformed of a square base and 3 triangles.
To get the surface area of the pyramid, we can just get the area of each of these simpler parts.
The base is a square of 22 in by 22 in, then the area of the base is:
B = (22in)*(22 in) = 484 in^2
For each triangle, the area will be:
A = (base side)*(height)/2
A = (22in)*(14in)/2 = 154 in^2
And we have 4 of these triangles, then the total area of the pyramid will be:
total area = B + 4*A = 484in^2 + 4*(154 in^2) = 1,100 in^2
If you want to learn more about square pyramids:
brainly.com/question/22744289
#SPJ1
The answer is b it goes through all y values