Answer:
All of them
Step-by-step explanation:
According to the ratio test, for a series ∑aₙ:
If lim(n→∞) |aₙ₊₁ / aₙ| < 1, then ∑aₙ converges.
If lim(n→∞) |aₙ₊₁ / aₙ| > 1, then ∑aₙ diverges.
(I) aₙ = 10 / n!
lim(n→∞) |(10 / (n+1)!) / (10 / n!)|
lim(n→∞) |(10 / (n+1)!) × (n! / 10)|
lim(n→∞) |n! / (n+1)!|
lim(n→∞) |1 / (n+1)|
0 < 1
This series converges.
(II) aₙ = n / 2ⁿ
lim(n→∞) |((n+1) / 2ⁿ⁺¹) / (n / 2ⁿ)|
lim(n→∞) |((n+1) / 2ⁿ⁺¹) × (2ⁿ / n)|
lim(n→∞) |(n+1) / (2n)|
1/2 < 1
This series converges.
(III) aₙ = 1 / (2n)!
lim(n→∞) |(1 / (2(n+1))!) / (1 / (2n)!)|
lim(n→∞) |(1 / (2n+2)!) × (2n)! / 1|
lim(n→∞) |(2n)! / (2n+2)!|
lim(n→∞) |1 / ((2n+2)(2n+1))|
0 < 1
This series converges.
Number of dimes collected is 339 and number of nickels collected is 113
<em><u>Solution:</u></em>
Given that There is a total of $39.55
There are 3 times as many dimes as nickels
To find: Number of dimes and nickels collected
Let "d" be the number of dimes collected
Let "n" be the number of nickels collected
We know that,
1 dime = $ 0.10
1 nickel = $ 0.05
From given information,
There are 3 times as many dimes as nickels
So, we get
Number of dimes = 3(number of nickels)
d = 3n
Given that there is total of $ 39.55
number of dimes collected x value of 1 dime + number of nickels collected x value of 1 nickel = $ 39.55

Substitute n = 113 in d = 3n

<em><u>Summarizing the results:</u></em>
number of dimes collected = 339
number of nickels collected = 113
1 + 3i, - sqrt 10 would be the other two answers
The volume of a pyramid is
V=(l*w*h)/3=(35*4)/3=140/3=46.67 cubic feet , choice C