Yes, it is. Even 0. 1x0=0
First you want to figure out what exactly it is you are looking for. We are looking for "capital letters that have rotational symmetry but do not have line symmetry"
So:
1. Must have rotational symmetry.
This means that if we rotate the capital letter 180 deg, either clockwise or counterclockwise, it will still look the same
2. Must not have line symmetry.
If an object has line symmetry, it means that if you draw a line down the middle (in any way), it will be symmetrical on both sides. We need capital letters that do not fit that condition.
Now we look at all capital letters.
We find that H, I, N,O, S, X, and Z are all rotationally symmetrical. Think about it. If you rotate them, they still look the same.
But, we have to make sure they do not have line symmetry. If we draw a line right down the middle of H, I, O and X (**note, the have multiple lines of symmetry), they are symmetrical on both sides of the line.
Now we are left with N, S, and Z
For this case we have that by definition, the equation of the line in the slope-intersection form is given by:

Where:
m: It is the slope of the line
b: It is the cut-off point with the y axis
We have the following points through which the line passes:

We find the slope of the line:

Thus, the equation of the line is of the form:

We substitute one of the points and find b:

Finally, the equation is:

Answer:

4 tables. 4*4 is 16, meaning that even if 4 players want to sit together it doesn't make a difference. With 16 players and 4 at a table we are going to need 4 tables.
I think it is B, but I'm not fully sure.