Step-by-step explanation:
<h3>
<u>(</u><u>5</u><u>p</u><u>+</u><u>1</u><u>1</u><u>)</u><u>+</u><u>(</u><u>8</u><u>p</u><u>-</u><u>4</u><u>)</u></h3>
<u>5</u><u>p</u><u>+</u><u>1</u><u>1</u><u>+</u><u>8</u><u>p</u><u>-</u><u>4</u>
<h3>
<u>5</u><u>p</u><u>+</u><em>1</em><em>1</em><em>+</em><u>8</u><u>p</u><em>-</em><em>1</em><em>4</em></h3><h3><u>5</u><u>p</u><u>+</u><u>7</u><u>+</u><u>8</u><u>p</u></h3><h3><u>1</u><u>3</u><u>p</u><u>+</u><u>7</u></h3>
<u>Hope</u><u> it's</u><u> help</u><u> </u><u>you</u>
<u>Have</u><u> a</u><u> great</u><u> day</u><u><</u><u>3</u>
<u>please</u><u> </u><u>make</u><u> me</u><u> brainliest</u><u> please</u>




solid line. we shade above the line

the dotted line. shadow above the line
Answer in the attachment (the first graph).
Answer:
Option B
Step-by-step explanation:
From the figure attached,
Circle D is drawn with the radius = DG or DE
A tangent FG has been drawn at a point G on the circle from an external point F.
By theorem,
Radius of a circle is always perpendicular to the tangent, drawn to the circle from an external point.
Therefore, DG ⊥ FG.
Option B will be the correct option.
The parabola's vertex would not be on the x-axis or y-axis and there would be no x-intercepts.
111) 5:4
112) 3.6
113) -4
114) 0.3 units down, 0.4 units to the left