Answer:
(0, -4)
Step-by-step explanation:
The coordinates of the points from which the directed line segment extends = (-6, -6) to (9, -1)
The ratio the required point partitions the line = 2 to 3
The formula for finding the coordinate of a point that partitions a line AB into a ratio 'a' to 'b', where the coordinates of, A = (x₁, y₁) and B = (x₂, y₂) is given as follows;
![\left(\dfrac{a}{a + b} \times (x_1 - x_2)+ x_1, \ \dfrac{a}{a + b} \times (y_1 - y_2)+ y_1 \right)](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7Ba%7D%7Ba%20%2B%20b%7D%20%5Ctimes%20%28x_1%20-%20x_2%29%2B%20x_1%2C%20%5C%20%5Cdfrac%7Ba%7D%7Ba%20%2B%20b%7D%20%5Ctimes%20%28y_1%20-%20y_2%29%2B%20y_1%20%5Cright%29)
Therefore, the required point is located as follows;
![\left(\dfrac{2}{2 + 3} \times (9 - (-6))+ (-6), \ \dfrac{2}{2 + 3}\times (-1 - (-6))+ (-6) \right) = (0, -4)](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7B2%7D%7B2%20%2B%203%7D%20%5Ctimes%20%289%20-%20%28-6%29%29%2B%20%28-6%29%2C%20%5C%20%5Cdfrac%7B2%7D%7B2%20%2B%203%7D%5Ctimes%20%28-1%20-%20%28-6%29%29%2B%20%28-6%29%20%5Cright%29%20%3D%20%280%2C%20-4%29)
The coordinates of the point is (0, -4)
(10/17) / (-15/17) =
10/17 * - 17/15 =
- 10/15 =
- 2/5 <==
============
2.75 / -2.2 =
- 1.25 <==
============
(-2 3/5) / (3/5) =
- 13/5 * 5/3 =
-13/3 or - 4 1/3 <==
============
(2 1/4) / (3/4) =
9/4 * 4/3 =
9/3 =
3 <==
Factorization of 8
= (2*2*2)